图书介绍
数学分析 1pdf电子书版本下载
- 刘名生,冯伟贞,韩彦昌编 著
- 出版社: 北京:科学出版社
- ISBN:9787030577962
- 出版时间:2018
- 标注页数:224页
- 文件大小:25MB
- 文件页数:241页
- 主题词:数学分析-高等学校-教材
PDF下载
下载说明
数学分析 1PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 实数与数列极限 1
1.0预备知识 1
1.0.1 一些常用的记号 1
1.0.2 逻辑命题的否命题 1
1.0.3 特殊的数集 2
1.1 实数的基本性质与常用不等式 3
1.1.1 实数的基本性质 3
1.1.2 一些常用的不等式 4
1.2 数列与数列极限的概念 6
1.2.1 数列的定义 6
1.2.2 数列极限的定义 7
1.3 收敛数列的性质 12
1.3.1 收敛数列的重要性质 12
1.3.2 无穷小与无穷大数列 17
1.4 发散数列与子列的概念 19
1.4.1 发散数列 19
1.4.2 数列的子列的概念 20
1.5 确界原理 22
1.5.1 有界集、上确界和下确界的概念 22
1.5.2 确界的数列刻画 24
1.5.3 数集确界的存在性与唯一性 25
1.6 数列收敛的判别法 27
1.6.1 迫敛性定理 27
1.6.2 单调有界定理 27
1.6.3 致密性定理与Cauchy收敛准则 30
小结 34
复习题 35
第2章 函数与函数极限 38
2.0预备知识 38
2.1 映射与函数的概念 39
2.1.1 映射的概念 39
2.1.2 函数的概念 39
2.1.3 函数的四种特性 41
2.1.4 函数的基本运算 43
2.1.5 反函数 44
2.1.6 初等函数 45
2.2 x→x0时函数极限的概念 49
2.2.1 引例 49
2.2.2 x趋于x0时的函数极限的定义 49
2.2.3 三种函数极限的关系 51
2.2.4 典型例子 51
2.3 x→x0时函数极限的概念 53
2.3.1 引例 53
2.3.2 x趋于x0时函数极限的定义 53
2.3.3 三种函数极限的关系 55
2.3.4 典型例子 56
2.4 函数极限的性质 58
2.5 函数极限存在的判别法 63
2.5.1 迫敛性定理 63
2.5.2 归结原则——Heine定理 66
2.5.3 函数的单调有界定理 69
2.5.4 Cauchy准则 70
2.6 无穷小量和无穷大量 73
2.6.1 无穷大量与无穷小量的定义与性质 73
2.6.2 无穷小量的比较 75
小结 78
复习题 79
第3章 函数的连续性 82
3.1 连续函数的概念 82
3.1.1 函数在一点x0连续的定义 82
3.1.2 函数的左连续与右连续及区间上的连续函数 83
3.1.3 典型例子 84
3.2 函数间断的概念 86
3.2.1 间断点的定义及其分类 86
3.2.2 典型例子 87
3.3 连续函数的局部性质与初等函数的连续性 89
3.3.1 局部性质 89
3.3.2 初等函数的连续性 90
3.3.3 应用函数的连续性求函数极限 92
3.4 连续函数的整体性质 94
3.4.1 有界性定理和最值定理 94
3.4.2 零点定理与介值定理 97
3.4.3 一致连续性定理 99
小结 103
复习题 104
第4章 微分与导数 106
4.1 微分与导数的概念 106
4.1.1 微分的概念 106
4.1.2 导数的概念 109
4.1.3 可微与可导的关系 111
4.1.4 可微函数与可导函数 112
4.2 求导方法与导数公式 113
4.2.1 用定义求函数的导数 113
4.2.2 导数的四则运算法则 115
4.2.3 反函数求导法则 117
4.2.4 复合函数求导法则 118
4.3 微分的计算与应用 123
4.3.1 微分的运算法则 123
4.3.2 微分在近似计算中的应用 123
4.4 高阶导数与高阶微分 126
4.4.1 高阶导数 126
4.4.2 高阶微分 129
4.5 参数方程所表示的函数的导数 131
4.5.1 参数方程与函数 131
4.5.2 用参数方程表示的函数的导数 132
4.5.3 用极坐标方程表示的曲线的切线 133
4.5.4 参数方程所表示的函数的高阶导数 134
小结 136
复习题 136
第5章 导数的应用 138
5.1 Fermat定理和Darboux定理 138
5.1.1 极值的定义与Fermat定理 138
5.1.2 Darboux定理 139
5.2 中值定理 140
5.2.1 Rolle中值定理 140
5.2.2 Lagrange中值定理 141
5.2.3 Cauchy中值定理 144
5.3 不定式极限 146
5.3.1 L’Hospital法则 147
5.3.2 其他类型的不定式极限 150
5.4 Taylor公式 153
5.4.1 带Peano型余项的Taylor公式 154
5.4.2 带Lagrange型余项的Taylor公式 156
5.4.3 若干初等函数的Maclaurin公式 157
5.4.4 Taylor公式应用举例 160
5.5 函数的单调性与凸性 163
5.5.1 函数的单调性 163
5.5.2 函数的凸性 165
5.5.3 曲线的拐点 169
5.5.4 单调性与凸性的应用——证明一些不等式 170
5.6 函数的极值与最值 173
5.6.1 函数的极值 173
5.6.2 函数的最值 176
5.7 函数作图 178
5.7.1 渐近线 179
5.7.2 函数图形的描绘 180
小结 183
复习题 184
第6章 实数集的稠密性与完备性 187
6.1 实数集的稠密性 187
6.1.1 两个实数的大小关系 187
6.1.2 实数集的稠密性 191
6.2 实数集的完备性 193
6.2.1 区间套定理 193
6.2.2 有限覆盖定理 195
6.2.3 聚点定理 197
6.2.4 实数集完备性基本定理的等价性 199
6.3 上极限和下极限简介 201
小结 203
复习题 204
习题答案或提示 205
参考文献 215
附录 216
索引 221