图书介绍

应用泛函分析pdf电子书版本下载

应用泛函分析
  • 纪友清,郭华,曹阳等编 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030542281
  • 出版时间:2018
  • 标注页数:202页
  • 文件大小:21MB
  • 文件页数:213页
  • 主题词:泛函分析-研究生-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

应用泛函分析PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 实分析基础 1

1.1 集合与映射 1

1.1.1 集合 1

1.1.2 映射 3

1.1.3 集合的基数 4

1.2 实数与函数的有关定理 7

1.2.1 实数的有关定理 7

1.2.2 函数的有关概念与定理 11

1.3 直线上的开集和闭集 15

1.3.1 开集和闭集的概念 15

1.3.2 开集和闭集的性质 17

1.3.3 开集和闭集的结构 19

1.4 可测集 20

1.4.1 有界开集和闭集的测度 20

1.4.2 可测集的概念 22

1.4.3 可测集的性质 24

1.5 可测函数 25

1.5.1 可测函数的概念 25

1.5.2 可测函数的性质 27

1.5.3 几乎处处收敛和测度收敛 29

1.6 Lebesgue积分 31

1.6.1 Riemann积分 31

1.6.2 Lebesgue积分的概念 33

1.6.3 Lebesgue积分的性质 35

1.6.4 Lp空间 37

习题1 38

第2章 距离空间 41

2.1 距离空间的定义和例子 41

2.1.1 距离空间的定义 41

2.1.2 距离空间的实例 41

2.2 度量空间中的点集 47

2.2.1 距离拓扑 47

2.2.2 稠密集与可分性 48

2.3 完备距离空间 49

2.3.1 距离空间的完备化 52

2.4 紧性与列紧性 54

2.5 Banach空间 60

2.6 不动点原理及其应用 68

2.6.1 Banach不动点原理及迭代方法 68

2.6.2 压缩映像原理在积分方程理论中的应用 72

2.6.3 利用不动点定理求解常微分方程 74

2.7 有界线性泛函与Hahn-Banach扩张定理 76

2.7.1 有界线性算子 76

2.7.2 Hahn-Banach定理 84

习题2 100

第3章 Hilbert空间 107

3.1 内积空间 107

3.1.1 内积空间的概念和性质 107

3.1.2 常见的内积空间 110

3.2 几个常用的Hilbert空间 112

3.3 正交分解 115

3.3.1 正交与正交补 115

3.3.2 变分原理与正交分解定理 117

3.3.3 正交分解定理的应用 120

3.4 Hilbert空间中的Fourier分析 123

3.4.1 标准正交系 123

3.4.2 Fourier级数 126

3.5 Hilbert空间的同构 129

习题3 131

第4章 有界线性算子 135

4.1 一致有界原理,开映射定理和闭算子定理 135

4.1.1 一致有界原理 135

4.1.2 开映射定理,闭算子定理 139

4.2 共轭空间与共轭算子 141

4.2.1 共轭空间 141

4.2.2 共轭算子 143

4.2.3 算子的值域与核空间 145

4.3 算子的谱 147

4.3.1 谱的定义和性质 147

4.3.2 具体算子的谱 149

4.4 紧算子 152

4.4.1 紧算子的定义及性质 152

4.4.2 紧算子的谱 155

4.5 自伴算子,射影算子 156

4.5.1 自伴算子的定义及性质 157

4.5.2 射影 161

4.5.3 不变子空间与约化子空间 164

习题4 165

附录 Sobolev空间 168

A.1 Sobolev空间 168

A.1.1 广义导数 168

A.1.2 Sobolev空间W1 2(G) 170

A.1.3 Sobolev空间W1 2(G) 171

A.2 正规正交基的存在性与Parseval公式 174

A.2.1 正规正交基的存在性 174

A.2.2 Parseval公式 174

A.3 共轭双线性泛函 176

A.4 Hilbert共轭算子与Lax-Milgram定理 178

A.4.1 Hilbert共轭算子 178

A.4.2 Lax-Milgram定理 182

A.4.3 算子的矩阵表示 185

A.5 二次变分问题 187

A.5.1 双线性形式 187

A.5.2 二次变分问题的主定理 188

A.6 从泛函分析角度考察Dirichlet原理 190

A.6.1 经典的欧拉-拉格朗日方程 191

A.6.2 广义边界值 194

A.6.3 Poincare-Friedrichs不等式 194

A.6.4 Dirichlet问题的解的存在性 196

参考文献 199

索引 200

精品推荐