图书介绍

经济数学 微积分 第2版 微课版pdf电子书版本下载

经济数学  微积分  第2版  微课版
  • 杨慧卿编著 著
  • 出版社: 北京:人民邮电出版社
  • ISBN:9787115450623
  • 出版时间:2018
  • 标注页数:330页
  • 文件大小:33MB
  • 文件页数:341页
  • 主题词:经济数学-高等学校-教材;微积分-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

经济数学 微积分 第2版 微课版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 函数、极限与连续 1

1.1 函数的概念和性质 1

1.1.1 区间和邻域 1

1.1.2 函数的概念 2

1.1.3 函数的表示法 3

1.1.4 函数的几何特性 5

习题1.1 7

1.2 反函数与复合函数 8

1.2.1 反函数 8

1.2.2 三角函数与反三角函数 9

1.2.3 复合函数 11

1.2.4 基本初等函数与初等函数 12

习题1.2 13

1.3 常用的经济函数介绍 13

1.3.1 单利与复利公式 14

1.3.2 需求函数与供给函数 14

1.3.3 成本函数与平均成本函数 16

1.3.4 收益函数与利润函数 16

习题1.3 18

1.4 数列、函数的极限 19

1.4.1 中国古代数学的极限思想 19

1.4.2 数列的极限 20

1.4.3 函数的极限 21

习题1.4 25

1.5 无穷小与无穷大 26

1.5.1 无穷小与无穷大的概念 26

1.5.2 无穷小的性质 27

1.5.3 无穷小的阶的比较 28

习题1.5 28

1.6 极限的运算法则 29

1.6.1 极限的四则运算 29

1.6.2 复合函数的极限运算法则 33

习题1.6 33

1.7 极限存在准则与两个重要极限 34

1.7.1 极限存在准则 34

1.7.2 两个重要极限 35

1.7.3 利用无穷小等价替换定理进行极限计算 38

1.7.4 连续复利 40

习题1.7 41

1.8 函数的连续性 41

1.8.1 函数的连续与间断 42

1.8.2 连续函数的性质及初等函数的连续性 45

1.8.3 闭区间上连续函数的性质 46

习题1.8 48

本章小结 48

第1章 复习题 49

第2章 一元函数微分学——导数、微分及其应 53

用2.1 导数的概念 53

2.1.1 引例 53

2.1.2 导数的概念 55

2.1.3 几种基本初等函数的导数公式 55

2.1.4 左导数与右导数 57

2.1.5 导数的几何意义 58

2.1.6 函数的可导与连续的关系 58

习题2.1 59

2.2 导数的运算 60

2.2.1 导数的四则运算法则 60

2.2.2 复合函数的求导法则 62

2.2.3 隐函数的求导方法 64

2.2.4 对数求导法 66

2.2.5 基本导数公式和求导法则 67

2.2.6 高阶导数 68

习题2.2 70

2.3 导数在经济学中的简单应用 71

2.3.1 边际与边际分析 71

2.3.2 弹性与弹性分析 74

习题2.3 76

2.4 函数的微分 77

2.4.1 微分的概念 77

2.4.2 微分的几何意义 79

2.4.3 微分在近似计算中的应用 79

2.4.4 微分基本公式和微分的运算法则 81

习题2.4 82

2.5 微分中值定理 82

2.5.1 罗尔定理 82

2.5.2 拉格朗日中值定理 84

2.5.3 柯西中值定理 87

习题2.5 87

2.6 洛必达法则 88

2.6.1 0/0型、∞/∞型未定式 88

2.6.2 其他类型未定式 90

习题2.6 92

2.7 函数的单调性、极值与最值 93

2.7.1 函数的单调性 93

2.7.2 函数的极值与求法 94

2.7.3 最大值与最小值 97

习题2.7 99

2.8 曲线的凹凸性、拐点及函数作图 101

2.8.1 曲线的凹凸性、拐点 101

2.8.2 曲线的渐近线 103

2.8.3 函数作图 104

习题2.8 106

本章小结 107

第2章 复习题 108

第3章 一元函数积分学——不定积分、定积分及其应用 108

3.1 不定积分的概念与性质 114

3.1.1 原函数和不定积分的概念 114

3.1.2 不定积分的性质 116

3.1.3 不定积分的基本公式 117

习题3.1 119

3.2 不定积分的换元积分法 119

3.2.1 第一换元积分法(凑微分法) 120

3.2.2 有理函数的积分 122

3.2.3 第二换元积分法 125

习题3.2 129

3.3 不定积分的分部积分法 130

习题3.3 134

3.4 定积分的概念 134

3.4.1 定积分概念的引入 134

3.4.2 定积分的概念 136

3.4.3 定积分的几何意义与经济意义 137

习题3.4 139

3.5 定积分的性质 139

习题3.5 141

3.6 微积分基本定理 142

3.6.1 变速直线运动的路程 142

3.6.2 积分上限函数与原函数存在定理 142

3.6.3 牛顿-莱布尼兹公式 143

习题3.6 146

3.7 定积分的换元积分法与分部积分法 147

3.7.1 定积分的换元积分法 147

3.7.2 定积分的分部积分法 149

习题3.7 151

3.8 反常积分 152

3.8.1 无穷区间上的反常积分 152

3.8.2 无界函数的反常积分 154

3.8.3 Γ函数 156

习题3.8 157

3.9 定积分的几何应用与经济应用 158

3.9.1 微元法 158

3.9.2 定积分的几何应用 159

3.9.3 定积分在经济中的应用 163

习题3.9 167

本章小结 168

第3章 复习题 169

第4章 多元函数微积分学 174

4.1 空间解析几何基础知识 174

4.1.1 空间直角坐标系 174

4.1.2 常见的空间曲面及其方程 176

4.1.3 空间曲线及其在坐标面上的投影曲线 179

习题4.1 179

4.2 多元函数的概念 180

4.2.1 平面区域的相关概念 180

4.2.2 多元函数的概念 182

4.2.3 二元函数的极限 183

4.2.4 二元函数的连续性 185

习题4.2 186

4.3 偏导数及其应用 187

4.3.1 偏导数 187

4.3.2 高阶偏导数 189

4.3.3 偏导数在经济分析中的应用 191

习题4.3 193

4.4 全微分及其应用 194

4.4.1 全微分 194

4.4.2 全微分在近似计算中的应用 198

习题4.4 198

4.5 多元复合函数与隐函数的求导公式 199

4.5.1 多元复合函数的求导公式 199

4.5.2 隐函数的求导公式 203

习题4.5 204

4.6 多元函数的极值及其应用 205

4.6.1 多元函数的极值 205

4.6.2 条件极值拉格朗日乘数法 207

4.6.3 多元函数的最值 209

习题4.6 211

4.7 二重积分的概念和性质 212

4.7.1 二重积分的概念 212

4.7.2 二重积分的性质 214

习题4.7 216

4.8 直角坐标下二重积分的计算 216

4.8.1 直角坐标下二重积分的计算 217

4.8.2 交换二次积分次序 221

习题4.8 222

4.9 极坐标下二重积分的计算 223

4.9.1 极坐标系 223

4.9.2 极坐标下二重积分的计算 224

4.9.3 无界区域上的反常二重积分 228

习题4.9 229

本章小结 230

第4章 复习题 231

第5章 微分方程与差分方程 237

5.1 微分方程的基本概念 237

5.1.1 微分方程的概念 237

5.1.2 微分方程的解 239

习题5.1 240

5.2 一阶微分方程 240

5.2.1 可分离变量的微分方程 241

5.2.2 齐次方程 243

5.2.3 一阶线性微分方程 246

习题5.2 249

5.3 二阶常系数线性微分方程 250

5.3.1 二阶常系数齐次线性微分方程 251

5.3.2 二阶常系数非齐次线性微分方程 254

习题5.3 257

5.4 差分方程 257

5.4.1 差分的概念 258

5.4.2 差分的运算法则 258

5.4.3 差分方程的概念 259

5.4.4 常系数线性差分方程的解的结构 260

5.4.5 一阶常系数线性差分方程的解法 260

习题5.4 265

本章小结 266

第5章 复习题 266

第6章 无穷级数 269

6.1 常数项级数的概念和性质 269

6.1.1 常数项级数的概念 269

6.1.2 常数项级数的性质 272

习题6.1 274

6.2 正项级数及其审敛法 274

6.2.1 正项级数收敛的充分必要条件 275

6.2.2 比较审敛法及其极限形式 275

6.2.3 比值审敛法和根值审敛法 277

习题6.2 280

6.3 任意项级数敛散性的判别 281

6.3.1 交错级数与莱布尼兹判别法 281

6.3.2 绝对收敛与条件收敛 282

习题6.3 283

6.4 幂级数 284

6.4.1 函数项级数的概念 284

6.4.2 幂级数 285

6.4.3 幂级数的运算 287

习题6.4 290

6.5 函数的幂级数展开 290

6.5.1 泰勒公式 290

6.5.2 泰勒级数 292

6.5.3 将函数展开成幂级数 293

习题6.5 297

本章小结 297

第6章 复习题 298

习题参考答案 301

附录 常用三角公式 329

参考文献 330

精品推荐