图书介绍

代数拓扑讲义pdf电子书版本下载

代数拓扑讲义
  • 周建伟编著 著
  • 出版社: 北京:科学出版社
  • ISBN:7030190513
  • 出版时间:2007
  • 标注页数:227页
  • 文件大小:7MB
  • 文件页数:237页
  • 主题词:代数拓扑

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

代数拓扑讲义PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 基本群 1

1.1 函子 1

习题1.1 4

1.2 映射的同伦与拓扑空间的同伦型 5

1.2.1 映射的同伦 5

1.2.2 拓扑空间的同伦型 9

1.2.3 相对同伦 14

习题1.2 15

1.3 基本群 16

1.3.1 基本群的定义 16

1.3.2 基本群的性质 21

习题1.3 26

1.4 基本群的计算与应用 27

1.4.1 S1的基本群 27

1.4.2 乘积空间的基本群 31

1.4.3 Sn的基本群(n≥2) 33

1.4.4 基本群的应用 34

习题1.4 36

1.5 覆盖空间 37

1.5.1 覆盖空间的定义与性质 37

1.5.2 覆盖变换 43

习题1.5 45

1.6 单连通覆盖空间 46

习题1.6 53

第2章 单纯同调群 55

2.1 单纯形与单纯复形 55

2.1.1 单纯形 55

2.1.2 单纯复形 57

2.1.3 单纯复形的例 59

习题2.1 62

2.2 单纯同调群 63

2.2.1 单纯链群 63

2.2.2 边缘算子与单纯同调群的定义 64

2.2.3 零维同调群 69

习题2.2 71

2.3 单纯同调群的计算 71

习题2.3 77

第3章 奇异同调群 78

3.1 奇异同调群的定义 78

3.1.1 奇异单形与边缘算子 78

3.1.2 诱导同态 84

3.1.3 零维同调群 86

习题3.1 87

3.2 H1(X)与π1(X)的关系 87

习题3.2 92

3.3 链复形 92

3.3.1 链复形 92

3.3.2 链映射与链同伦 96

习题3.3 100

3.4 奇异同调群的同伦不变性 101

习题3.4 107

3.5 相对同调群 108

3.5.1 相对同调群 108

3.5.2 相对同调群的同伦不变性 110

3.5.3 联系同态?* 113

习题3.5 114

第4章 正合同调序列与切除定理 116

4.1 正合同调序列 116

4.1.1 正合序列 116

4.1.2 空间偶的正合同调序列 119

4.1.3 链复形的同调序列 119

习题4.1 124

4.2 切除定理及其应用 125

习题4.2 130

4.3 切除定理的证明 131

4.3.1 奇异链的重心重分 131

4.3.2 证明Sd?id:C(X)→C(X) 134

4.3.3 切除定理的证明 136

习题4.3 137

4.4 Mayer-Vietoris序列 137

4.4.1 定理的叙述与证明 138

4.4.2 Mayer-Vietoris序列的应用 140

习题4.4 143

4.5 球面上的应用 143

4.5.1 映射度 144

4.5.2 球面上向量场 148

习题4.5 149

4.6 球状复形的同调群 150

4.6.1 球状复形的定义 150

4.6.2 球状复形的同调群 154

4.6.3 计算的例子 156

习题4.6 163

4.7 单纯同调群与奇异同调群的同构 164

附记 167

习题4.7 170

4.8 Euler-Poincaré示性数 170

习题4.8 177

第5章 奇异上同调与对偶定理 179

5.1 奇异上同调群 179

5.1.1 反变函子Hom(·,Z) 179

5.1.2 奇异上同调群的定义 180

5.1.3 相对上同调群 184

习题5.1 188

5.2 万有系数定理 189

5.2.1 上同调群的万有系数定理 189

5.2.2 下同调群的万有系数定理与Künneth公式 195

习题5.2 197

5.3 上积与卡积 198

5.3.1 上积 198

5.3.2 卡积 203

习题5.3 206

5.4 流形的定向 206

习题5.4 213

5.5 Poincaré对偶定理 213

5.5.1 归纳极限 213

5.5.2 Poincaré对偶定理 217

5.5.3 Poincaré对偶定理的应用 221

习题5.5 223

参考文献 224

名词索引 225

精品推荐