图书介绍

代数拓扑pdf电子书版本下载

代数拓扑
  • (美)哈彻(Hatcher,A.)著 著
  • 出版社: 清华大学出版社
  • ISBN:730210588X
  • 出版时间:2005
  • 标注页数:544页
  • 文件大小:98MB
  • 文件页数:40075207页
  • 主题词:代数拓扑-研究生-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

代数拓扑PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 0.Some Underlying Geometric Notions 1

Homotopy and Homotopy Type 1

Cell Complexes 5

Operations on Spaces 8

Two Criteria for Homotopy Equivalence 10

The Homotopy Extension Property 14

Chapter 1.The Fundamental Group 21

1.1.Basic Constructions 25

Paths and Homotopy 25

The Fundamental Group of the Circle 29

Induced Homomorphisms 34

1.2.Van Kampen's Theorem 40

Free Products of Groups 41

The van Kampen Theorem 43

Applications to Cell Complexes 50

1.3.Covering Spaces 56

Lifting Properties 60

The Classification of Covering Spaces 63

Deck Transformations and Group Actions 70

Additional Topics 83

1.A.Graphs and Free Groups 83

1.B.K(G,1)Spaces and Graphs of Groups 87

Chapter 2.Homology 97

2.1.Simplicial and singular Homology 102

△-Complexes 102

Simplicial Homology 104

Singular Homology 108

Homotopy Invariance 110

Exact Sequences and Excision 113

The Equivalence of Simplicial and Singular Homology 128

2.2.Computations and Applications 134

Degree 134

Cellular Homology 137

Mayer-Vietoris Sequences 149

Homology with Coefficients 153

2.3.The Formal Viewpoint 160

Axioms for Homology 160

Categories and Functors 162

Additional Topics 166

2.A.Homology and Fundamental Group 166

2.B.Classical Applications 169

2.C.Simplicial Approximation 177

Chapter 3.Cohomology 185

3.1.Cohomology Groups 190

The Universal Coefficient Theorem 190

Cohomology of Spaces 197

3.2.Cup Product 206

The Cohomology Ring 211

A Künneth Formula 218

Spaces with Polynomial Cohomology 224

3.3.Poincaré Duality 230

Orientations and Homology 233

The Duality Theorem 239

Connection with Cup Product 249

Other Forms of Duality 252

Additional Topics 261

3.A.Universal Coefficients for Homology 261

3.B.The General Künneth Formula 268

3.C.H-Spaces and Hopf Algebras 281

3.D.The Cohomology of SO(n) 292

3.E.Bockstein Homomorphisms 303

3.F.Limits and Ext 311

3.G.Transfer Homomorphisms 321

3.H. Local Coefficients 327

Chapter 4.Homotopy Theory 337

4.1.Homotopy Groups 339

Definitions and Basic Constructions 340

Whitehead,s Theorem 346

Cellular Approximation 348

CW Approximation 352

4.2.Elementary Methods of Calculation 360

Excision for Homotopy Groups 360

The Hurewicz Theorem 366

Fiber Bundles 375

Stable Homotopy Groups 384

4.3.Connections with Cohomology 393

The Homotopy Construction of Cohomology 393

Fibrations 405

Postnikov Towers 410

Obstruction Theory 415

Additional Topics 421

4.A.Basepoints and Homotopy 421

4.B.The Hopf Invariant 427

4.C.Minimal Cell Structures 429

4.D.Cohomology of Fiber Bundles 431

4.E.The Brown Representability Theorem 448

4.F.Spectra and Homology Theories 452

4.G.Gluing Constructions 456

4.H.Eckmann-Hilton Duality 460

4.I.Stable Splittings of Spaces 466

4.J.The Loopspace of a Suspension 470

4.K.The Dold-Thom Theorem 475

4.L.Steenrod Squares and Powers 487

Appendix 519

Topology of Cell Complexes 519

The Compact-Open Topology 529

Bibliography 533

Index 539

精品推荐