图书介绍
半导体物理与器件 基本原理pdf电子书版本下载
- Donald A.Neamen著 著
- 出版社: 北京:清华大学出版社
- ISBN:7302075301
- 出版时间:2003
- 标注页数:746页
- 文件大小:114MB
- 文件页数:40038939页
- 主题词:半导体物理学-高等学校-教材-英文;半导体器件-高等学校-教材-英文
PDF下载
下载说明
半导体物理与器件 基本原理PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 The Crystal Structure of Solids 1
Preview 1
1.1 Semiconductor Materials 1
1.2 pes of Solids 2
1.3 Space Lattices 3
1.3.1 Primitive and Unit Cell 3
1.3.2 Basic Crystal Structures 4
1.3.3 Cstal Planes and Miller Indices 5
1.3.4 The Diamond Structure 9
1.4 Atomic Bonding 11
1.5 Imperfections and Impurities in Solids 13
1.5.1 Imperfections in Solids 13
1.5.2 Impurities in Solids 15
1.6 Growth of Semiconductor Materials 16
1.6.1 Growth from a Melt 16
1.6.2 Epitazial Growth 18
1.7 Summa 19
Problems 21
CHAPTER 2 Introduction to Quantum Mechanics 24
Preview 24
2.1 Principles of Quantum Mechanics 25
2.1.1 Energy Quanta 25
2.1.2 Wave Particle Duality 26
2.1.3 The Uncertain Principle 29
2.2 Schrodinger's Wave Equation 30
2.2.1 The Wave Equation 30
2.2.2 Physical Meaning of the WaveFunction 32
2.2.3 Bounda Conditions 32
2.3 Applications of Schrodinger's WaveEquation 33
2.3.1 Electn in Free Space 33
2.3.2 The Infinite Potential Well 34
2.3.3 The Step Potential Function 38
2.3.4 The Potential Barrier 42
2.4 Extensions of the Wave Theo to Atoms 45
2.4.1 The One-Electn Atom 45
2.4.2 The Periodic Table 48
2.5 Summary 50
Problems 51
CHAPTER 3 Introduction to the Quantum Theoryof Solids 56
Preview 56
3.1 Allowed and Forbidden Energy Bands 57
3.1.1 Formation of Energy Bands 57
3.1.2 The Knig-Penney Model 61
3.1.3 The k-Space Diagram 66
3.2 Electrical Conduction in Sods 70
3.2.1 The Energy Band and the Bond Model 70
3.2.2 Drift Current 72
3.2.3 Electron Eective mass 73
3.2.4 Concept of the Hole 76
3.2.5 Metals, Insulators, andSemiconductors 78
3.3 Extension to Three Dimensions 80
3.3.1 The k-Space Diagrams of Si and GaAs 81
3.3.2 Additional Effective Mass Concepts 82
3.4 Densi of States Function 83
3.4.1 Maatheutical Derivation 83
3.4.2 Extension to Semiconductors 86
3.5 Statistical Mechanics 88
3.5.1 Statistical Laws 88
3.5.2 The Fermi-Dirac Pbabili Function 89
3.5.3 The Distribution Function and theFermi Energy 91
3.6 Summa 96
Problems 98
CHAPTER 4 The Semiconductor in Equilibrium 103
Preview 103
4.1 Charge Carriers in Semiconductors 104
4.1.1 Equilibrium Distribution of Electnsand Holes 104
4.1.2 The no and po Equations 106
4.1.3 The Intrinsic Carrier Concentration 110
4.1.4 The Intrinsic Fermi-LevelPosition 113
4.2 Dopant Atoms and Energy Levels 115
4.2.1 Qualitative Description 115
4.2.2 Ionization Energy 117
4.2.3 Gup 111-V Semiconductors 119
4.3 The Extrinsic Semiconductor 120
4.3.1 Equilibrium Distribution of Electnsand Holes 121
4.3.2 The nopo Product 124
4.3.3 TheFermi Dirac Integl 125
4.3.4 Degenerate and Nondegenterate. Semiconductors 127
4.4 Statistics of Donors and Acceptors 128
4.4.1 Pbability Function 128
4.4.2 Complete Ionizauion and Feze-Out 129
4.5 Charge Neutrality 132
4.5.1 Compensated SenuConduetois 133
4.5.2 Equilibrium Electron and HoleConcentrations 133
4.6 Position of Fermi Energy Level 139
4.6.1 Mhematical Derivation 139
4.6.2 Variation of Ef withDaping Concentrationand Temperatune 142
4.6.3 Relevance of the Fermi Energy 144
4.7 Summa 145
Problems 148
CHAPTER 5 Carrier ansport Phenomena 154
Preview 154
5.1 Carrier Drift 154
5.1.1 Drift Current Densi 155
5.1.2 Mobili Effects 157
5.1.3 Conductivi 162
5.1.4 Veloci Saturation 167
5.2 Carrier Diusion 169
5.2.1 Diusion Current Densi 170
5.2.2 Total Curnt Densi 173
5.3 Graded Impuri Distribution 173
5.3.1 Induced Electric Field 174
5.3.2 The Einstein Relation 176
5.4 The Hall Effect 177
5.5 Summa 180
Problems 182
CHAPTER 6 Nonequilibrium Excess Carriersin Semiconductors 189
Preview 189
6.1 Carrier Generation and Recombination 190
6.1.1 The Semiconductor in Equilibrium 190
6.1.2 Excess Carrier Generationand Recombination 191
6.2 Characteristics of Excess Carriers 194
6.2.1 Continui Equations 195
6.2.2 Time-Dependent DiusionEquations 196
6.3 Ambipolar Transpo 197
6.3.1 Derivation of the AmbipolarTransport Equation 198
6.3.2 Limits of Extrinsic Dopingand Low Injection 200
6.3.3 Applications of the AmbipolarTransport Equation 203
6.3.4 Dielectric Relaxation Time Constant 211
6.3.5 Hayneshockley Experiment 213
6.4 AQuasi-Fertni Energy Levels 216
6.5 Excess-Carrier Lifetime 218
6.5.1 Shockley-Read-Hall Theoof Recombination 219
6.5.2 Limits of Extrinsic Dopingand Low Injection 222
6.6 Surface Effects 224
6.6.1 Surface States 224
6.6.2 Surface Recombination Veloci 226
6.7 Summa 229
Problems 231
CHAPTER 7 The pn Junction 238
Preview 238
7.1 Basic Structure of the pn Junction 238
7.2 Zero Applied Bias 240
7.2.1 Built-in Potential Barrier 240
7.2.2 Electric Field 242
7.2.3 Space Charge Width 246
7.3 Reverse Applied Bi 247
7.3.1 Space Charge Width and ElectricField 248
7.3.2 Junction Capacitance 251
7.3.3 One-Sided Junctions 253
7.4 Nonuniforny Doped Junctions 255
7.4.1 Linearly Graded Junction 255
7.4.2 Hyperabrupt Junctions 258
7.5 Summa 260
Problems 262
CHAPTER 8 The pn Junction Diode 268
Preview 268
8.1 pn Junction Current 269
8.1.1 Qualitative Description of Charge Flowin a pn Junction 269
8.1.2 Ideal Current-Voltage Relationship 270
8.1.3 Bounda Conditions 271
8.1.4 Minori Carrier Distribution 275
8.1.5 Ideal pn Junction Current 277
8.1.6 Summa of Physics 281
8.1.7 Temperature Eects 284
8.1.8 The “Short” Diode 284
8.2 Small-Signal Model of the pn Junction 286
8.2.1 Diffusion Resistance 286
8.2.2 Small-Signal Admittance 288
8.2.3 Equivalent Circuit 295
8.3 Generation-Recombination Currents 297
8.3.1 Reverse-Bias Generation Current 297
8.3.2 Forward-Bias Recombination Current 300
8.3.3 Total Forward-Bias Current 303
8.4 Junction Breakdown 305
8.5 Charge Storage and Diode Transients 309
8.5.1 The Tu—— Transient 309
8.5.2 The Tu-on Transient 312
8.6 The Tunnel Diode 313
8.7 Summa 316
Problems 318
CHAPTER 9 Metal-Semiconductor and SemiconductorHeterojunctions 326
Preview 326
9.1 The Schottky Barrier Diode 326
9.1.1 Qualitative Characteristics 327
9.1.2 Ideal Junction Properties 329
9.1.3 Nonideal Eects on the Barrier Height 333
9.1.4 Current-Voltage Relationship 337
9.1.5 Comparison of the Schooky Barrier Diodeand the pn Junction Diode 341
9.2 Metal-Semiconductor Ohmic Contacts 344
9.2.1 Ideal Nonctifying Barriers 345
9.2.2 Tunneling Barrier 346
9.2.3 Specific Contact Resistance 348
9.3 Heterojunctions 349
9.3.1 Heterojunction Materials 350
9.3.2 Energy-Band Diagrams 350
9.3.3 Two-Dimensional Electron Gas 351
9.3.4 Equilibum Electrostatics 354
9.3.5 Curnt-Voltage Charactestics 359
9.4 Summa 359
Problems 361
CHAPTER 10 The Bipolar Transistor 367
Preview 367
10.1 The Bipolar Transistor Action 368
10.1.1 The Basic Principle of operation 369
10.1.2 Simplified Transistor CurrentRelations 370
10.1.3 The Modes of Operation 374
10.1.4 Amplification with BipolarTransistors 376
10.2 Minori Carrier Distribution 377
10.2.1 Forward-Active Mode 378
10.2.2 Other Modes of Operation 384
10.3 Low-Frequency Common-BaseCurrent Gain 385
10.3.1 Contributing Factors 386
10.3.2 Mathematical Derivation of CurrentGain Factors 388
10.3.3 Summa 392
10.3.4 Example Calculations of theGain Factors 393
10.4 Nonideal Effects 397
10.4.1 Base Width Modulation 397
10.4.2 High Injection 401
10.4.3 Emier Bandgap Narwing 403
10.4.4 Current Cwding 405
10.4.5 Nonuniform Base Doping 406
10.4.6 Breakdown Voltage 408
10.5 Equivalent Circuit Models 413
10.5.1 Ebers Moll Model 414
10.5.2 Gummel-Poon Model 416
10.5.3 Hybd-Pi Model 418
10.6 Frequency Limitations 422
10.6.1 Time-Delay Factors 422
10.6.2 Transistor Cutoff Frequency 424
10.7 Large-Signal Switching 427
10.7.1 Switching Characteristics 427
10.7.2 The Schonky-Clamped Transistor 429
10.8 Other Bipolar Transistor Structures 430
10.8.1 Polysilicon EmierBJT 430
10.8.2 Silicon-Germanium Base Transistor 431
10.8.3 Hetejunction Bipolar Transistors 434
10.9 Summa 435
Problems 438
CHAPTER 11 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor 449
Preview 449
11.1 The Two-Terminal MOS Structure 450
11.1.1 Energy-Band Diagrams 450
11.1.2 Depletion Layer Thickness 455
11.1.3 Work Function Dierences 458
11.1.4 Ft-Band Voltage 462
11.1.5 Threshold Voltage 465
11.1.6 Charge Distribution 471
11.2 Capacitance-Voltage Characteristics 474
11.2.1 Ideal C-V Characteristics 474
11.2.2 Frequency Effects 479
11.2.3 Fixed Oxide and InterfaceCharge Eects 480
11.3 The Basic MOSFET Operation 483
11.3.1 MOSFET Structures 483
11.3.2 Current-Voltage Retionship—Concepts 486
11.3.3 Current-Voltage Relationship—Mathematical Derivation 490
11.3.4 Transconductance 498
11.3.5 Substrate Bias Effects 499
11.4 Frequency Limitations 502
11.4.1 Small-Signal Equivalent Circuit 502
11.4.2 Frequency Limitation Factorsand Cuto Frequency 504
11.5 The CMOS Technology 507
11.6 Summa 509
Problems 513
CHAPTER 12 Metal-Oxide--Semiconductor Field-EffectTransistor: Additional Concepts 523
Preview 523
12.1 Nonideal Effects 524
12.1.1 Subthreshold Conduction 524
12.1.2 Channel Length Modulation 526
12.1.3 Mobili Variation 530
12.1.4 Velocity Saturation 532
12.1.5 Ballistic Transport 534
12.2 MOSFET Scaling 534
12.2.1 Constant-Field Scaling 534
12.2.2 Threshold Voltage—FirstAppximations 535
12.2.3 Generalized Scaling 536
12.3 Threshold Voltage Modications 537
12.3.1 Short-Channel Eects 537
12.3.2 Narrow-Channel Eects 541
12.4 Additional Electcal Charactestics 543
12.4.1 Breakdown Voltage 544
12.4.2 The Lightly Doped DrainTransistor 550
12.4.3 Threshold Adjustment by IonImplantation 551
12.5 Radiation and Hot-Electron Effects 554
12.5.1 Radiation-Induced Oxide Charge 555
12.5.2 Radiation-Induced Interface States 558
12.5.3 Hot-Electn Charging Eects 560
12.6 Summa 561
Problems 563
CHAPTER 13 The Junction Field-Effect Transistor 570
Preview 570
13.1 gET Concepts 571
13.1.1 Basic pn JFET Operation 571
13.1.2 Basic MESFET Operation 575
13.2 The Device Characteristics 577
13.2.1 Internal Pincho Voltage, PinchoVolge, and Drain-to-SourceSaturation Voltage 577
13.2.2 Ideal DC Current-Voltage RelationshipDepletion Mode JFET 582
13.2.3 Transconductance 587
13.2.4 The MESFET 588
13.3 Nonideal Eects 593
13.3.1 Channel Length Modulation 594
13.3.2 Veloci Saturation Eects 596
13.3.3 Subthreshold and Gate CurrentEects 596
13.4 Equivalent Circuit and FrequencyLimitations 598
13.4.1 Small-Signal Equivalent Circuit 598
13.4.2 Frequency Limitation Factorsand Cuto Frequency 600
13.5 High Electron Mobili Transistor 602
13.5.1 Quantum Well Structures 603
13.5.2 Transistor Performance 604
13.6 Summa 609
Problems 611
CHAPTER 14 Optical Devices 617
Preview 617
14.1 Optical Absorption 618
14.1.1 Photon Absorption Coecient 618
14.1.2 Electron-Hole Pair GenerationRate 621
14.2 Solar Cells 623
14.2.1 The pn Junction Solar Cell 623
14.2.2 Conversion Eficiency and SolarConcentration 626
14.2.3 Nonuniform Absorption Eects 628
14.2.4 The Hetejunction Solar Cell 628
14.2.5 Amorphous Silicon Solar Cells 630
14.3 Photodetectors 631
14.3.1 Photoconductor 632
14.3.2 Photodiode 634
14.3.3 PIN Photodiode 639
14.3.4 Avalanche Photodiode 640
14.3.5 Phototransistor 641
14.4 Photoluminescence andElectroluminescence 642
14.4.1 Basic Transitions 643
14.4.2 Luminescent Eciency 645
14.4.3 Materials 645
14.5 Light Emitting Diodes 647
14.5.1 Generation of Light 648
14.5.2 Internal Quantum Efficiency 648
14.5.3 External Quantum Efciency 649
14.5.4 LED Devices 651
14.6 Laser Diodes 653
14.6.1 Stimulated Emission and PopulationInversion 654
14.6.2 Optical Cavity 656
14.6.3 Threshold Current 657
14.6.4 Device Structures andCharacteristics 658
14.7 Summa 661
Problems 663
CHAPTER 15 Semiconductor Power Devices 668
Preview 668
15.1 Power Bipolar Transistors 668
15.1.1 Vertical Power Transistor Structure 669
15.1.2 Power Transistor Characteristics 670
15.1.3 Darlington Pair Configuration 674
15.2 Power MOSFETs 676
15.2.1 Power Transistor Structures 676
15.2.2 Power MOSFET Characteristics 678
15.2.3 Parasitic BJT 682
15.3 Heat Sinks and JunctionTemperature 683
15.4 The Thyristor 686
15.4.1 The Basic Characteristics 686
15.4.2 Triggering the SCR 689
15.4.3 SCR Tu-Of 692
15.4.4 Device Structus 692
15.5 Summa 696
Problems 699
APPENDIX A Selected List of Symbols 730
APPENDIX B and General Constants 711
APPENDIX C The Periodic Table 715
APPENDIX D The Error Function 717
APPENDIX E “Derivation” ofSchrodiogr'sWaveEquation 719
APPENDIX F Unit of Energy——The Electron-Volt 721
APPENDIX G Answers to Selected Problems 723
Index 731