图书介绍

现代数值计算方法pdf电子书版本下载

现代数值计算方法
  • 肖筱南主编;肖筱南等编著 著
  • 出版社: 北京:北京大学出版社
  • ISBN:7301063326
  • 出版时间:2003
  • 标注页数:253页
  • 文件大小:5MB
  • 文件页数:265页
  • 主题词:数值计算-计算方法-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

现代数值计算方法PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 数值计算中的误差分析 1

§1数值计算的对象、任务与特点 1

§2误差与数值计算的误差估计 2

一、误差的来源与分类 2

二、误差与有效数字 4

三、数值计算的误差估计 8

§3选用和设计算法时应遵循的原则 11

一、选用数值稳定的计算公式,控制舍入误差的传播 11

二、尽量简化计算步骤以便减少运算次数 13

三、尽量避免两个相近的数相减 13

四、绝对值太小的数不宜作除数 14

五、合理安排运算顺序,防止大数“吃掉”小数 15

本章小结 15

算法与程序设计实例 16

思考题 19

习题一 19

第二章 线性方程组的数值解法 21

一、高斯(Gauss)列主元消去法 22

§1线性方程组的直接解法 22

二、高斯全主元消去法 27

三、选主元素消去法的应用 28

四、矩阵的三角分解 30

五、平方根法及改进的平方根法 37

六、追赶法 43

七、列主元三角分解法 45

一、雅可比(Jacobi)迭代法 50

§2线性方程组的迭代解法 50

二、高斯塞德尔(Gauss-Seidel)迭代法 53

三、逐次超松弛(SOR)迭代法 54

§3迭代法的收敛性 57

一、向量范数与矩阵范数 58

二、迭代法的收敛性 60

本章小结 67

算法与程序设计实例 68

思考题 73

习题二 74

第三章 非线性方程的数值解法 78

§1根的搜索与二分法 78

一、根的搜索 78

二、二分法 80

§2迭代法及其迭代收敛的加速方法 83

一、迭代法 84

二、迭代收敛的加速方法 93

一、牛顿迭代法 96

§3牛顿(Newton)迭代法 96

二、迭代法的收敛阶 104

§4弦截法 105

本章小结 108

算法与程序设计实例 109

思考题 111

习题三 112

§1幂法与反幂法 114

第四章 矩阵的特征值及特征向量的计算 114

一、幂法 115

二、反幂法 120

§2雅可比方法 122

一、古典雅可比方法 123

二、雅可比过关法 128

本章小结 130

算法与程序设计实例 131

思考题 134

习题四 135

第五章 插值法 137

§1拉格朗日(Lagrange)插值 138

一、代数插值问题 138

二、插值多项式的存在与惟一性 139

三、线性插值 139

四、抛物线插值 142

五、拉格朗日插值多项式 143

§2分段低次插值 146

一、分段线性插值 148

二、分段抛物线插值 149

§3差商与牛顿插值多项式 150

一、差商的定义及性质 151

二、牛顿插值多项式及其余项 153

§4差分与等距节点插值公式 157

一、差分的定义及性质 157

二、等距节点插值多项式及其余项 159

§5埃尔米特(Hermite)插值 163

一、一般情形的埃尔米特插值问题 163

二、特殊情形的埃尔米特插值问题 166

§6三次样条插值 167

一、三次样条插值函数的定义 168

二、三次样条插值函数的构造 169

本章小结 177

算法与程序设计实例 178

思考题 181

习题五 182

第六章 最小二乘法与曲线拟合 186

§1用最小二乘法求解矛盾方程组 186

一、最小二乘原理 186

二、用最小二乘法求解矛盾方程组 187

§2用多项式作最小二乘曲线拟合 190

本章小结 195

算法与程序设计实例 196

习题六 200

思考题 200

第七章 数值微积分 203

§1牛顿-柯特斯(Newton-Cotes)公式 204

一、数值求积的基本思想 204

二、插值型求积公式 205

三、牛顿-柯特斯公式 206

§2龙贝格(Romberg)求积公式 209

一、复化求积公式 209

二、变步长求积公式 211

三、龙贝格求积公式 212

§3高斯型求积公式 214

一、代数精确度 214

二、高斯型求积公式 216

三、勒让德(Legendre)多项式 219

§4数值微分 219

一、差商型求导公式 219

二、插值型求导公式 220

本章小结 222

算法与程序设计实例 223

思考题 225

习题七 226

第八章 常微分方程的数值解法 228

§1欧拉(Euler)方法 229

一、欧拉公式 229

二、欧拉预估-校正方法 230

三、欧拉方法的误差估计 232

一、龙格-库塔方法的基本思想 233

§2龙格-库塔(Runge-Kutta)方法 233

二、二阶龙格-库塔公式 234

三、高阶龙格-库塔公式 235

§3线性多步方法 237

一、线性多步方法的基本思想 237

二、阿达姆斯(Adams)外插公式及其误差 238

三、阿达姆斯内插公式 240

一、一阶微分方程组的数值解法 241

§4一阶微分方程组和高阶微分方程的数值解法 241

二、高阶微分方程的数值解法 242

本章小结 243

算法与程序设计实例 243

思考题 246

习题八 246

习题答案与提示 248

参考书目 253

精品推荐