图书介绍
离散数学pdf电子书版本下载
- 孙吉贵等著 著
- 出版社: 北京:高等教育出版社
- ISBN:7040112485
- 出版时间:2002
- 标注页数:367页
- 文件大小:13MB
- 文件页数:378页
- 主题词:
PDF下载
下载说明
离散数学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 集合论基础 1
1.1 集合的基本概念 2
习题1.1 6
1.2 关系 7
1.2.1 关系的基本概念及其性质 7
1.2.2 等价关系 12
1.2.3 部分序关系 16
习题1.2 18
1.3 映射 19
1.3.1 集合的基数 20
1.3.2 可数集合 21
1.3.2 不可数集合 23
1.4.1 关系在关系数据库中的应用 25
1.4 集合在计算机科学中的应用 25
习题1.3 25
1.4.2 关系代数与数据子语言 30
1.4.3 等价关系在计算机中的应用 32
1.4.4 序关系在项目管理中的应用 33
第二章 命题逻辑 35
2.1 命题以及逻辑联结词 36
2.1.1 命题 36
2.1.2 逻辑联结词 37
习题2.1 39
2.2 命题公式 39
2.2.1 公式 39
2.2.2 解释 40
习题2.2 41
2.3.1 公式的等价 42
2.3 命题公式的等价关系和蕴涵关系 42
2.3.2 公式的蕴涵 43
2.3.3 演绎 44
2.3.4 公式蕴涵的证明方法 46
习题2.3 47
2.4 范式 48
2.4.1 析取范式和合取范式 48
2.4.2 主析取范式和主合取范式 49
2.4.3 恒真恒假性的判定 51
习题2.4 53
2.5 命题逻辑在二值逻辑器件和语句逻辑中的应用 53
3.1 谓词逻辑的基本概念 56
3.1.1 谓词和量词 56
第三章 谓词逻辑 56
3.1.2 改名规则 58
习题3.1 59
3.2 谓词公式 60
3.2.1 公式 60
3.2.2 解释 60
习题3.2 62
3.3 谓词公式的等价关系和蕴涵关系 62
3.3.1 公式的等价和蕴涵 62
3.3.2 谓词演算的推理理论 64
习题3.3 66
3.4 范式 67
3.4.1 前束范式 67
3.4.2 Skolem范式 68
习题3.4 70
3.6 谓词逻辑的应用 74
3.6.1 谓词逻辑与数据子语言 74
习题3.5 74
6.3.2 谓词逻辑与逻辑程序设计语言 76
第四章 图与网络 84
4.1 图 85
4.1.1 图的基本概念 85
4.1.2 权图Dijkstra算法 89
习题4.1 92
4.2 树 93
4.2.1 树及其等价命题 93
4.2.2 最优树Kruskal算法 95
4.2.3 求最优树的其他算法 97
4.3 有向图 Euler路 99
习题4.2 99
4.3.1 有向图与有向树 100
4.3.2 Euler路 Euler图 103
4.3.3 无向图 无向图中的Euler路 107
习题4.3 108
4.4 Hamilton图 109
4.4.1 Hamilton路Hamilton图的必要条件 110
4.4.2 Hamilton图的若干充分条件 111
习题4.4 117
4.5 平面图 117
4.5.1 平面图判定 Kuratowski判定准则 117
4.5.2 平面图的Eulet公式 120
4.5.3 平面图的对偶图 Plato体 122
4.5.4 平面图的着色 124
习题4.5 125
4.6 匹配 二部图 127
习题4.6 132
4.7 Konig无限性引理 132
习题4.7 135
4.8 网络优化算法 136
4.8.1 图与网络的数据结构 136
4.8.2 单源最短路径问题具体算法及实现和比较 139
4.8.3 最大流问题具体算法及实现和比较 141
习题4.8 152
第五章 数论基础 153
5.1 整除性 辗转相除 154
5.1.1 整除及其性质 154
5.1.2 辗转相除 156
5.1.3 利用数的数码特征判别某些整除性 159
习题5.1 160
5.2 互质 质因数分解 161
5.2.1 整数互质 161
5.2.2 质数与合数 算术基本定理 163
习题5.2 164
5.3 合同 一次同余式 166
5.3.1 合同及其性质 166
5.3.2 剩余类 一次同余式 168
习题5.3 170
5.4 秦九韶定理 Euler函数 171
5.4.1 一次同余式组 秦九韶定理 171
5.4.2 一元高次同余式的化简 173
5.4.3 剩余系遍历 Euler函数 174
习题5.4 177
5.5 一元高次同余式 二次剩余 178
5.5.1 一元高次同余式的解 178
5.5.2 二次同余式 二次剩余 181
5.5.3 二次剩余的判定 Legendre符号 182
习题5.5 185
5.6 数论在计算机通信安全中的应用 187
5.6.1 密码系统 187
5.6.2 凯撒密码 188
5.6.3 Vigenere密码 189
5.6.4 Hill加密算法 189
5.6.5 RSA公钥系统 190
习题5.6 192
第六章 群与环 193
6.1 代数系统 194
习题6.1 196
6.2 群的定义 197
6.2.1半群 197
6.2.2 群 198
6.2.3 群的性质 199
习题6.2 201
6.3 置换群 202
6.3.1 转换的定义 202
6.3.2 置换的轮换表法 203
6.3.3 置换的顺向圈表示 205
6.3.4 置换的奇偶性 206
习题6.3 208
6.4.2 子群的判别条件 209
6.4.1 子群的定义 209
6.4 子群及其陪集 209
6.4.3 循环群 210
6.4.4 陪集 213
习题6.4 215
6.5 同构及同态 216
6.5.1 同态映射 216
6.5.2 同构映射 217
6.5.3 同态核 219
习题6.5 221
6.6 环 222
6.6.1 环的定义 222
6.6.2 环的性质 223
习题6.6 227
6.7.1 理想 228
6.7 环同态 228
6.7.2 环中合同关系 229
6.7.4 单纯环与极大理想 232
习题6.7 233
6.8 群与环在计算机科学中的应用 234
6.8.1 计数问题 234
6.8.2 纠错码 239
第七章 多项式 有限域 250
7.1 域的特征 素域 250
7.1.1 域的特征 250
7.1.2 素域 251
习题7.1 253
7.2 多项式的整除性 253
7.3 多项式的根 258
习题7.2 258
习题7.3 262
7.4 有理域上的多项式 263
习题7.4 266
7.5 分圆多项式 267
7.5.1 复数域上的分圆多项式 267
7.5.2 任意域上的分圆多项式 271
习题7.5 273
7.6 有限域 274
习题7.6 277
7.7 多项式编码方法及其实现 277
习题7.7 281
8.1 引言 282
第八章 格与布尔代数 282
8.2 格的定义 283
习题8.2 287
8.3 格的性质 287
8.3.1 对偶原理 287
8.3.2 格的其他性质 289
8.3.3 格的同态与同构 291
习题8.3 294
8.4 几种特殊的格 295
8.4.1 有界格 295
8.4.2 有余格 296
8.4.3 分配格 297
8.4.4 模格 298
习题8.4 301
8.5.1 布尔代数的定义及其性质 302
8.5 布尔代数 302
8.5.2 有限布尔代数的表示理论 307
8.5.3 布尔代数的同态与同构 311
习题8.5 313
8.6 布尔表达式的化简问题 314
习题8.6 325
8.7 格与布尔代数在计算机科学中的应用 326
8.7.1 开关电路函数 326
8.7.2 逻辑门 328
8.7.3 全加器的逻辑设计 328
第九章 语言和有限状态机 331
9.1 语言和语法 331
9.1.1 语法结构 333
9.1.2 语法结构的类型 335
9.1.3 演绎树 336
9.1.4 Backus-Naur form 337
习题9.1 338
9.2 带有输出的有限状态机 339
习题9.2 344
9.3 没有输出的有限状态机 345
习题9.3 350
9.4 语言识别 350
9.4.1 正则集合 350
9.4.2 KLEENE定理 352
9.4.3 其他几种类型的有限状态机 358
习题9.4 358
9.5 Turing机 361
习题9.5 365
参考文献 367