图书介绍

微分方程与边界值问题 英文版pdf电子书版本下载

微分方程与边界值问题  英文版
  • (美)兹尔(Zill,D.G.) (美)库伦(Cullen,M.R.)著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:7111123182
  • 出版时间:2003
  • 标注页数:631页
  • 文件大小:41MB
  • 文件页数:721页
  • 主题词:微分方程-高等学校-教材-英文;边值问题-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

微分方程与边界值问题 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 1

1.1 Definitions and Terminology 2

1.2 Initial-Value Problems 15

1.3 Differential Equations as Mathematical Models 22

Chapter 1 in Review 37

2 FIRST-ORDER DIFFERENTIAL EQUATIONS 39

2.1 Solution Curves Without the Solution 40

2.2 Separable Variables 51

2.3 Linear Equations 60

2.4 Exact Equations 72

2.5 Solutions by Substitutions 80

2.6 A Numerical Solution 86

Chapter 2 in Review 92

3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS 95

3.1 Linear Equations 96

3.2 Nonlinear Equations 109

3.3 Systems of Linear and Nonlinear Differential Equations 121

Chapter 3 in Review 130

Project Module: Harvesting of Renewable Natural Resources, by Gilbert N. Lewis 133

4 HIGHER-ORDER DIFFERENTIAL EQUATIONS 138

4.1 Preliminary Theory: Linear Equations 139

4.1.1 Initial-Value and Boundary-Value Problems 139

4.1.2 Homogeneous Equations 142

4.1.3 Nonhomogeneous Equations 148

4.2 Reduction of Order 154

4.3 Homogeneous Linear Equations with Constant Coefficients 158

4.4 Undetermined Coefficients—Superposition Approach 167

4.5 Undetermined Coefficients—Annihilator Approach 178

4.6 Variation of Parameters 188

4.7 Cauchy-Euler Equation 193

4.8 Solving Systems of Linear Equations by Elimination 201

4.9 Nonlinear Equations 207

Chapter 4 in Review 212

5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS 215

5.1 Linear Equations: Initial-Value Problems 216

5.1.1 Spring/Mass Systems: Free Undamped Motion 216

5.1.2 Spring/Mass Systems: Free Damped Motion 220

5.1.3 Spring/Mass Systems: Driven Motion 224

5.1.4 Series Circuit Analogue 227

5.2 Linear Equations: Boundary-Value Problems 237

5.3 Nonlinear Equations 247

Chapter 5 in Review 259

Project Module: The Collapse of the Tacoma Narrows Suspension Bridge, by Gilbert N. Lewis 263

6 SERIES SOLUTIONS Of LINEAR EQUATIONS 267

6.1 Solutions About Ordinary Points 268

6.1.1 Review of Power Series 268

6.1.2 Power Series Solutions 271

6.2 Solutions About Singular Points 280

6.3 Two Special Equations 292

Chapter 6 in Review 304

7 THE LAPLACE TRANSFORM 306

7.1 Definition of the Laplace Transform 307

7.2 Inverse Transform and Transforms of Derivatives 314

7.3 Translation Theorems 324

7.3.1 Translation on the s-Axis 324

7.3.2 Translation on the t-Axis 328

7.4 Additional Operational Properties 338

7.5 Dirac Delta Function 351

7.6 Systems of Linear Equations 354

Chapter 7 in Review 361

8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 364

8.1 Preliminary Theory 365

8.2 Homogeneous Linear Systems with Constant Coefficients 375

8.2.1 Distinct Real Eigenvalues 376

8.2.2 Repeated Eigenvalues 380

8.2.3 Complex Eigenvalues 384

8.3 Variation of Parameters 393

8.4 Matrix Exponential 399

Chapter 8 in Review 404

Project Module: Earthquake Shaking of Multistory Buildings, by Gilbert N. Lewis 406

9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 410

9.1 Euler Methods and Error Analysis 411

9.2 Runge-Kutta Methods 417

9.3 Multistep Methods 424

9.4 Higher-Order Equations and Systems 427

9.5 Second-Order Boundary-Value Problems 433

Chapter 9 in Review 438

10 PLANE AUTONOMOUS SYSTEMS AND STABILITY 439

10.1 Autonomous Systems, Critical Points, and Periodic Solutions 440

10.2 Stability of Linear Systems 448

10.3 Linearization and Local Stability 458

10.4 Modeling Using Autonomous Systems 470

Chapter 10 in Review 480

11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 483

11.1 Orthogonal Functions 484

11.2 Fourier Series 489

11.3 Fourier Cosine and Sine Series 495

11.4 Sturm-Liouville Problem 504

11.5 Bessel and Legendre Series 511

11.5.1 Fourier-Bessel Series 512

11.5.2 Fourier-Legendre Series 515

Chapter 11 in Review 519

12 PARTIAL DIFFERENTIAL EQUATIONS AND BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 521

12.1 Separable Partial Differential Equations 522

12.2 Classical Equations and Boundary-Value Problems 527

12.3 Heat Equation 533

12.4 Wave Equation 536

12.5 Laplace s Equation 542

12.6 Nonhomogeneous Equations and Boundary Conditions 547

12.7 Orthogonal Series Expansions 551

12.8 Boundary-Value Problems Involving Fourier Series in Two Variables 555

Chapter 12 in Review 559

13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS 561

13.1 Problems Involving Laplace s Equation in Polar Coordinates 562

13.2 Problems in Polar and Cylindrical Coordinates: Bessel Functions 567

13.3 Problems in Spherical Coordinates: Legendre Polynomials 575

Chapter 13 in Review 578

14 INTEGRAL TRANSFORM METHOD 581

14.1 Error Function 582

14.2 Applications of the Laplace Transform 584

14.3 Fourier Integral 595

14.4 Fourier Transforms 601

Chapter 14 in Review 607

15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 610

15.1 Elliptic Equations 611

15.2 Parabolic Equations 617

15.3 Hyperbolic Equations 625

Chapter 15 in Review 630

精品推荐