图书介绍

复变函数pdf电子书版本下载

复变函数
  • 路见可等编著 著
  • 出版社: 武汉:武汉大学出版社
  • ISBN:7307033747
  • 出版时间:2001
  • 标注页数:275页
  • 文件大小:7MB
  • 文件页数:285页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

复变函数PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 复数和复函数 1

1.1 复数 1

1.复数域 1

2.复数的几何表示 2

3.球极投影、复球面、无穷远点、扩充复平面 6

习题1.1 8

1.2 复变函数 9

1.复变函数的概念 9

2.复变函数的极限与连续性 10

3.同伦概念和区域的连通性 11

4.辐角函数 15

习题1.2 20

1.3 复数列和复级数 22

1.复数列和复数项级数 22

2.复函数列和复函数项级数 23

习题1.3 24

第一章习题 24

2.1 解析函数 26

1.导数及其几何意义 26

第二章 解析函数基础 26

2.解析函数概念 30

习题2.1 32

2.2 一些初等解析函数 33

1.多项式和有理函数 33

2.指数函数 33

3.三角函数和双曲函数 35

4.对数函数 37

5.幂函数和根式函数 40

6.初等多值函数分枝问题 44

7.有理函数的对数 48

8.有理函数的方根 51

9.反三角函数和反双曲函数 54

习题2.2 55

第二章习题 57

第三章 复积分 59

3.1 复积分概念 59

1.复积分的定义及计算 59

2.复积分的基本性质 62

习题3.1 63

3.2 基本定理 64

1.柯西积分定理 65

2.原函数 71

习题3.2 75

3.3 基本公式 76

1.柯西积分公式 76

2.柯西导数公式 78

3.柯西不等式 81

4.莫瑞勒(Morera)定理 81

习题3.3 82

1.反常复积分的定义 83

3.4 反常复积分 83

2.柯西主值积分 85

3.高阶奇异积分 88

习题3.4 91

第三章习题 91

第四章 解析函数的级数理论 93

4.1 一般理论 93

1.复函数项级数的逐项积分和逐项求异 93

2.幂级数及其和函数 94

习题4.1 97

4.2 泰勒展式及惟一性定理 98

1.解析函数的泰勒展式 98

2.解析函数的惟一性 105

3.最大模原理 107

习题4.2 109

4.3 罗朗展式及弧立奇点 111

1.解析函数的罗朗展式 112

2.求罗朗展式的方法 114

3.解析函数的弧立奇点 115

4.整函数和亚纯函数 125

习题4.3 127

第四章习题 129

第五章 留数理论 131

5.1 留数及其计算 131

1.留数概念 132

2.无穷远点处的留数 135

3.边界点的情形 137

习题5.1 139

1.留数定理 140

5.2 留数定理及其推广 140

2.推广的留数定理 143

习题5.2 147

5.3 应用于积分计算 147

1.单值解析函数的应用 148

2.多值解析函数的应用 153

3.高阶奇异积分的应用 161

习题5.3 161

5.4 辐角原理和儒歇(Rouche)定理 163

1.辐角原理 163

2.儒歇定理 165

习题5.4 167

第五章习题 168

第六章 解析开拓 171

6.1 解析开拓的概念和方法 171

1.基本概念 171

2.透弧开拓 172

3.幂级数开拓 178

习题6.1 181

1. 完全解析函数和黎曼面 183

6.2 完全解析函数及单值性定理 183

2.单值性定理 185

习题6.2 190

第六章习题 190

第七章 共形映照 191

7.1 分式线性映照 191

1.共形性 192

2.映照群、不动点 194

3.三对对应点决定分式线性映照 194

4.保圆周及侧 195

5.保对称点 198

6三个特殊的分式线性映照 200

习题7.1 204

7.2 共形映照的一般理论 205

1.单叶解析函数的性质 205

2.黎曼映照定理 208

3.边界对应定理 211

习题7.2 213

1.指数与对数函数映照 214

7.3 几个初等函数的映照 214

2.幂函数映照 216

3.儒可夫斯基(ykobckhh)函数映照 218

4.余弦函数映照 220

习题7.3 222

7.4 综合实例 223

1.已知函数求映照区域 223

2.已知对应区域求映照函数 224

习题7.4 235

第七章习题 237

第八章 调和函数 240

8.1 调和函数的概念及其性质 240

1.调和函数与解析函数的关系 240

2.极值原理 243

3.波阿松(Poisson)公式及均值公式 244

习题8.1 246

8.2 狄里克来(Dirichlet)问题 247

1.一般狄里克来问题 247

2.波阿松积分的性质 248

4.上半平面的狄里克来问题 250

3.圆域上的狄里克来问题 250

习题8.2 252

8.3 许瓦兹(Schwarz)克里斯多菲(Christoffel)公式 252

1.一般公式 252

2.例 256

习题8.3 260

第八章习题 261

第九章 解析函数在平面场中的应用 263

9.1 解析函数的流体力学意义 263

1.复环流 264

2.复势 265

3.源(汇)点、涡点 267

4.偶极子 268

习题9.1 269

9.2 柱面绕流与机翼升力计算 269

1.圆盘绕流 270

2.一般截面绕流 272

3.机翼升力计算 273

习题9.2 275

精品推荐