图书介绍

应用多元统计分析 基于R的实验pdf电子书版本下载

应用多元统计分析  基于R的实验
  • 韩明编著 著
  • 出版社: 上海:同济大学出版社
  • ISBN:9787560885636
  • 出版时间:2019
  • 标注页数:255页
  • 文件大小:105MB
  • 文件页数:264页
  • 主题词:多元分析-统计分析-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

应用多元统计分析 基于R的实验PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 绪论 1

1.1 多元统计分析概述 1

1.2 多元统计分析的应用 2

1.3 本书的基本框架和内容安排 4

1.4 用于实验的数据集 5

2 多元数据的表示及可视化 6

2.1 多元数据的表示 7

2.1.1 多元数据的一般格式 7

2.1.2 多元数据的数字特征 7

2.2 多元数据的可视化 9

2.3 实验 9

2.3.1 实验2.3.1 mtcars数据集的展示 9

2.3.2 实验2.3.2 iris数据集的描述和展示 11

2.3.3 实验2.3.3 mtcars数据集的可视化 14

2.3.4 实验2.3.4 iris数据集的可视化 18

2.3.5 实验2.3.5 四个城市销售数据的展示和可视化 28

2.3.6 附录:RColorBrewer包的配色方案介绍 31

3 线性回归分析 34

3.1 一元线性回归的回顾 35

3.1.1 数学模型 35

3.1.2 回归参数的估计 36

3.1.3 回归方程的显著性检验 37

3.1.4 预测 39

3.2 多元线性回归 39

3.2.1 多元线性回归模型 40

3.2.2 回归参数的估计 40

3.2.3 回归方程的显著性检验 41

3.2.4 预测 42

3.3 实验 42

3.3.1 实验3.3.1 women数据集的回归分析 43

3.3.2 实验3.3.2 Boston数据集的回归分析 48

3.3.3 实验3.3.3 state.x77数据集的回归分析 55

3.3.4 实验3.3.4 mtcars数据集的回归分析 57

4 逐步回归与回归诊断 60

4.1 逐步回归 60

4.1.1 变量的选择 60

4.1.2 逐步回归的计算 61

4.2 回归诊断 61

4.3 Box-Cox变换 62

4.4 实验 63

4.4.1 实验4.4.1 stackloss数据集的逐步回归 63

4.4.2 实验4.4.2 stackloss数据集的回归诊断 67

4.4.3 实验4.4.3 state.x77数据集的逐步回归和回归诊断 68

4.4.4 实验4.4.4 stackloss数据集的Box-Cox变换 75

5 广义线性模型与非线性模型 77

5.1 广义线性模型 77

5.1.1 广义线性模型概述 77

5.1.2 Logistic模型 79

5.1.3 对数线性模型 81

5.2 非线性模型 82

5.3 实验 83

5.3.1 实验5.3.1 淋巴细胞白血病人生存数据的Logistic模型 83

5.3.2 实验5.3.2 The Children Ever Born Data的对数线性模型 87

5.3.3 实验5.3.3 “挑战者号”航天飞机O形环失效的广义线性模型 91

5.3.4 实验5.3.4 柑橘重量与直径的非线性模型 95

5.3.5 实验5.3.5 USPop数据集的非线性模型 100

6 方差分析 104

6.1 单因素方差分析 104

6.1.1 数学模型 105

6.1.2 方差分析 105

6.1.3 均值的多重比较 107

6.2 双因素方差分析 108

6.2.1 不考虑交互作用 108

6.2.2 考虑交互作用 110

6.3 多元方差分析 113

6.4 实验 113

6.4.1 实验6.4.1 cholesterol数据集的方差分析 113

6.4.2 实验6.4.2 果汁含铅比实验数据的方差分析 117

6.4.3 实验6.4.3 老鼠存活时间的方差分析 119

6.4.4 实验6.4.4 UScereal数据集的方差分析 122

7 聚类分析 127

7.1 聚类分析的基本思想与意义 127

7.2 Q型聚类分析 128

7.2.1 两点之间的距离 128

7.2.2 两类之间的距离 129

7.2.3 系统聚类法 130

7.2.4 k均值聚类 130

7.3 R型聚类分析 131

7.3.1 变量相似性度量 131

7.3.2 变量聚类法 132

7.4 实验 133

7.4.1 实验7.4.1 iris数据集的聚类分析 133

7.4.2 实验7.4.2 城镇居民消费性支出的聚类分析 134

7.4.3 实验7.4.3 城镇居民消费性支出的k均值聚类 138

7.4.4 实验7.4.4 城镇居民消费性支出中8个变量的聚类分析 139

8 判别分析 144

8.1 距离判别 145

8.1.1 马氏距离 145

8.1.2 判别准则与判别函数 146

8.1.3 多总体情形 148

8.2 Fisher判别 149

8.2.1 判别准则 150

8.2.2 判别函数中系数的确定 150

8.2.3 确定判别函数 152

8.3 Bayes判别 153

8.3.1 误判概率与误判损失 153

8.3.2 两总体的Bayes判别 154

8.4 实验 157

8.4.1 实验8.4.1 iris数据集的判别分析 157

8.4.2 实验8.4.2 心肌梗塞患者的判别分析 159

8.4.3 实验8.4.3 根据人文发展指数的判别分析 161

9 主成分分析 167

9.1 主成分分析的基本思想及方法 168

9.2 特征值因子的筛选 169

9.3 主成分回归分析 170

9.4 实验 171

9.4.1 实验9.4.1 首批沿海开放城市的主成分分析 171

9.4.2 实验9.4.2 USJudgeRatings数据集的主成分分析 177

10 因子分析 185

10.1 因子分析模型 186

10.1.1 数学模型 186

10.1.2 因子分析模型的性质 187

10.1.3 因子载荷矩阵中的几个统计性质 187

10.2 因子载荷矩阵的估计方法 188

10.2.1 主成分分析法 188

10.2.2 主因子法 188

10.3 因子旋转 189

10.4 因子得分 190

10.4.1 因子得分的概念 190

10.4.2 加权最小二乘法 191

10.5 因子分析的步骤 192

10.6 实验 192

10.6.1 实验10.6.1 ability.cov数据集的因子分析 192

10.6.2 实验10.6.2 Harman74数据集的因子分析 201

11 对应分析 212

11.1 对应分析简介 212

11.2 对应分析的原理 213

11.2.1 对应分析的数据变换方法 213

11.2.2 对应分析的原理和依据 216

11.2.3 对应分析的计算步骤 217

11.3 实验 220

11.3.1 实验11.3.1 美国授予哲学博士学位的对应分析 220

11.3.2 实验11.3.2 汉字读写能力与数学成绩的对应分析 224

11.3.3 实验11.3.3 收入与品牌的对应分析 227

11.3.4 实验11.3.4 caith数据集的对应分析 229

11.3.5 实验11.3.5 smoke数据集的对应分析 231

12 典型相关分析 235

12.1 典型相关分析的基本思想 235

12.2 典型相关的数学描述 236

12.3 原始变量与典型变量之间的相关性 239

12.4 典型相关系数的检验 241

12.5 实验 243

12.5.1 实验12.5.1 投资性变量与国民经济变量的典型相关分析 243

12.5.2 实验12.5.2 科学研究、开发投入与产出的典型相关分析 248

参考文献 253

精品推荐