图书介绍

应用近世代数pdf电子书版本下载

应用近世代数
  • 胡冠章编著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302032645
  • 出版时间:1999
  • 标注页数:250页
  • 文件大小:6MB
  • 文件页数:260页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

应用近世代数PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 引言和预备知识 1

1.1几类实际问题 1

1.项链问题 1

2.分子结构的计数问题 2

3.正多面体着色问题 2

4.图的构造与计数问题 4

5.开关线路的构造与计数问题 5

6.数字通信的可靠性问题 6

7.几何作图问题 7

8.代数方程根式求解问题 8

习题1.1 8

1.2集合与映射 9

1.集合的记号 9

2.子集与幂集 10

3.子集的运算 10

4.包含与排斥原理 11

5.映射的概念 13

6.映射的分类 15

7.映射的复合 17

8.映射的逆 18

习题1.2 20

1.3二元关系 20

1.集合的笛卡儿积 21

2.二元关系 22

3.等价关系和等价类 23

4.偏序和全序 25

习题1.3 28

1.4整数与同余方程 29

1.整数的运算 29

2.最大公因子和最小公倍数 29

3.互素 33

4.同余方程及孙子定理 34

习题1.4 39

第2章 群论 40

2.1基本概念 40

1.群和半群 40

2.关于单位元的性质 42

3.关于逆元的性质 43

4.群的几个等价性质 43

习题2.1 49

2.2子群 50

1.子群 50

2.元素的阶 53

习题2.2 54

2.3循环群和生成群,群的同构 55

1.循环群和生成群 55

2.群的同构 58

3.循环群的性质 59

习题2.3 61

2.4变换群和置换群,凯莱定理 62

1.置换群 63

2.凯莱(Cayley)定理 69

习题2.4 71

2.5子群的陪集和拉格朗日定理 72

1.子群的陪集 72

2.子群的指数和拉格朗日定理 74

习题2.5 76

2.6正规子群和商群 77

1.正规子群的概念 77

2.正规子群的性质 78

3.商群 81

4.单群 83

习题2.6 83

2.7共轭元和共轭子群 84

1.中心和中心化子 84

2.共轭元和共轭类 85

3.共轭子群与正规化子 87

4.置换群的共轭类 88

习题2.7 92

2.8群的同态 93

1.群的同态 93

2.同态基本定理 94

3.有关同态的定理 97

4.自同态与自同构 100

习题2.8 102

2.9群对集合的作用,伯恩赛德引理 103

1.群对集合的作用 103

2.轨道与稳定子群 105

3.伯恩赛德(Burnside)引理 108

习题2.9 109

2.10应用举例 110

1.项链问题 110

2.分子结构的计数问题 115

3.正多面体着色问题 116

4.开关线路的计数问题 117

5.图的计数问题 119

习题2.10 121

2.11群的直积和有限可换群 122

1.群的直积 122

2.有限可换群的结构 124

习题2.11 128

2.12有限群的结构,西罗定理 128

1.p-子群与Sylow p-子群 128

2.西罗(Sylow)定理 129

习题2.12 133

第3章 环论 134

3.1环的定义和基本性质 134

1.环的定义 134

2.环内一些特殊元素和性质 137

3.环的分类 139

习题3.1 141

3.2子环、理想和商环 142

1.子环 142

2.生成子环和生成理想 146

3.商环 147

习题3.2 150

3.3环的同构与同态 151

1.环的同构与同态 151

2.有关同态的一些定理 152

3.分式域 154

习题3.3 156

3.4整环中的因子分解 156

1.一些基本概念 157

2.既约元和素元 157

3.最大公因子 159

习题3.4 160

3.5唯一分解整环 161

1.唯一分解整环及其性质 161

2.主理想整环 164

3.欧氏环 166

习题3.5 167

3.6多项式分解问题 168

1.本原多项式及其性质 168

2.D[x]的分解性质 170

3.多项式的可约性判断 172

习题3.6 175

3.7应用举例 176

1.编码问题 176

2.多项式编码方法及其实现 177

习题3.7 182

第4章 域论 183

4.1域和域的扩张,几何作图问题 183

1.素域和域的特征 183

2.扩张次数,代数元和超越元 185

3.代数扩张与有限扩张 188

4.几何作图问题 189

习题4.1 194

4.2分裂域,代数基本定理 195

1.分裂域 195

2.代数基本定理 199

习题4.2 201

4.3有限域,有限几何 201

1.有限域的构造及唯一性 201

2.有限域的元素的性质 203

3.Zp[x]中多项式的根 205

4.有限域的子域 206

5.有限几何 208

习题4.3 208

4.4单位根,分圆问题 210

1.单位根 210

2.分圆问题 210

习题4.4 213

附录Ⅰ其它代数系简介 214

1.格与布尔代数 214

2.模的概念及例 217

3.代数 218

习题 218

附录Ⅱ习题提示与答案 219

参考文献 238

符号索引 239

名词索引 244

精品推荐