图书介绍

椭圆曲线算术中的高等论题 英文版pdf电子书版本下载

椭圆曲线算术中的高等论题  英文版
  • JosephH.Silverman著 著
  • 出版社: 世界图书北京出版公司
  • ISBN:9787510004834
  • 出版时间:2010
  • 标注页数:528页
  • 文件大小:111MB
  • 文件页数:538页
  • 主题词:椭圆曲线-研究-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

椭圆曲线算术中的高等论题 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction 1

CHAPTER Ⅰ Elliptic and Modular Functions 5

1.The Modular Group 6

2.The Modular Curve X(1) 14

3.Modular Functions 23

4.Uniformization and Fields of Moduli 34

5.Elliptic Functions Revisited 38

6.q-Expansions of Elliptic Functions 47

7.q-Expansions of Modular Functions 55

8.Jacobi's Product Formula for △(τ) 62

9.Hecke Operators 67

10.Hecke Operators Acting on Modular Forms 74

11.L-Series Attached to Modular Forms 80

Exercises 85

CHAPTER Ⅱ Complex Multiplication 95

1.Complex Multiplication over C 96

2.Rationality Questions 104

3.Class Field Theory—A Brief Review 115

4.The Hilbert Class Field 121

5.The Maximal Abelian Extension 128

6.Integrality of j 140

7.Cyclotomic Class Field Theory 151

8.The Main Theorem of Complex Multiplication 157

9.The Associated Gr?ssencharacter 165

10.The L-Series Attached to a CM Elliptic Curve 171

Exercises 178

CHAPTER Ⅲ Elliptic Surfaces 187

1.Elliptic Curves over Function Fields 188

2.The Weak Mordell-Weil Theorem 191

3.Elliptic Surfaces 200

4.Heights on Elliptic Curves over Function Fields 212

5.Split Elliptic Surfaces and Sets of Bounded Height 220

6.The Mordell-Weil Theorem for Function Fields 230

7.The Geometry of Algebraic Surfaces 231

8.The Geometry of Fibered Surfaces 236

9.The Geometry of Elliptic Surfaces 245

10.Heights and Divisors on Varieties 255

11.Specialization Theorems for Elliptic Surfaces 265

12.Integral Points on Elliptic Curves over Function Fields 274

Exercises 278

CHAPTER Ⅳ The Néron Model 289

1.Group Varieties 290

2.Schemes and S-Schemes 297

3.Group Schemes 306

4.Arithmetic Surfaces 311

5.Néron Models 318

6.Existence of Néron Models 325

7.Intersection Theory,Minimal Models,and Blowing-Up 338

8.The Special Fiber of a Néron Model 350

9.Tate's Algorithm to Compute the Special Fiber 361

10.The Conductor of an Elliptic Curve 379

11.Ogg's Formula 389

Exercises 396

CHAPTER Ⅴ Elliptic Curves over Complete Fields 408

1.Elliptic Curves over C 408

2.Elliptic Curves over R 413

3.The Tate Curve 422

4.The Tate Map Is Surjective 429

5.Elliptic Curves over p-adic Fields 438

6.Some Applications of p-adic Uniformization 445

Exercises 448

CHAPTER Ⅵ Local Height Functions 454

1.Existence of Local Height Functions 455

2.Local Decomposition of the Canonical Height 461

3.Archimedean Absolute Values—Explicit Formulas 463

4.Non-Archimedean Absolute Values—Explicit Formulas 469

Exercises 476

APPENDIX A Some Useful Tables 481

1.Bernoulli Numbers and ζ(2k) 481

2.Fourier Coefficients of △(τ) and j(τ) 482

3.Elliptic Curves over Q with Complex Multiplication 483

Notes on Exercises 484

References 488

List of Notation 498

Index 504

精品推荐