图书介绍
应用近世代数 第3版pdf电子书版本下载
- 胡冠章,王殿军编著 著
- 出版社: 北京:清华大学出版社
- ISBN:730212566X
- 出版时间:2006
- 标注页数:223页
- 文件大小:8MB
- 文件页数:236页
- 主题词:抽象代数-研究生-教材
PDF下载
下载说明
应用近世代数 第3版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 引言和预备知识 1
1.1 几类实际问题 1
1.一些计数问题 1
2.数字通信的可靠性问题与保密性问题 5
3.几何作图问题 7
4.代数方程根式求解问题 8
习题1.1 8
1.2 集合与映射 9
1.集合的记号 9
2.子集与幂集 9
3.子集的运算 10
4.包含与排斥原理 10
5.映射的概念 12
6.映射的分类 13
7.映射的复合 15
8.映射的逆 16
习题1.2 17
1.3 二元关系 18
1.二元运算与代数系统 18
2.二元关系 19
3.等价关系、等价类和商集 19
4.偏序和全序 22
习题1.3 24
1.4 整数与同余方程 24
1.整数的运算 25
2.最大公因子和最小公倍数 25
3.互素 29
4.同余方程及孙子定理 29
习题1.4 34
第1章小结 35
第2章 群论 37
2.1 基本概念 37
1.群和半群 37
2.关于单位元的性质 39
3.关于逆元的性质 39
4.群的几个等价性质 40
习题2.1 45
2.2 子群 45
1.子群 45
2.元素的阶 48
习题2.2 49
2.3 循环群和生成群,群的同构 50
1.循环群和生成群 50
2.群的同构 51
3.循环群的性质 53
习题2.3 54
2.4 变换群和置换群,Cayley定理 55
1.置换群 56
2.Cayley定理 60
习题2.4 62
2.5 子群的陪集和Lagrange定理 62
1.子群的陪集 62
2.子群的指数和Lagrange定理 64
习题2.5 66
2.6 正规子群和商群 67
1.正规子群的概念 67
2.正规子群的性质 68
3.商群 69
4.单群 71
习题2.6 71
2.7 共轭元和共轭子群 72
1.中心和中心化子 72
2.共轭元和共轭类 73
3.共轭子群与正规化子 74
4.置换群的共轭类 75
习题2.7 78
2.8 群的同态 79
1.群的同态 79
2.同态基本定理 80
3.有关同态的定理 82
4.自同态与自同构 85
习题2.8 86
2.9 群对集合的作用,Burnside引理 87
1.群对集合的作用 87
2.轨道与稳定子群 88
3.Burnside引理 90
习题2.9 92
2.10 应用举例 92
1.项链问题 93
2.分子结构的计数问题 96
3.正多面体着色问题 97
4.开关线路的计数问题 98
5.图的计数问题 99
6.RSA密码系统的加密与解密变换 101
7.二次同余方程 102
习题2.10 104
2.11 群的直积和有限可换群 104
1.群的直积 104
2.有限可换群的结构 105
习题2.11 108
2.12 有限群的结构,Sylow定理 108
1.p-子群与Sylow p-子群 109
2.Sylow定理 109
习题2.12 112
第2章小结 112
第3章 环论 116
3.1 环的定义和基本性质 116
1.环的定义 116
2.环内一些特殊元素和性质 118
3.环的分类 120
习题3.1 121
3.2 子环、理想和商环 123
1.子环 123
2.生成子环和生成理想 126
3.商环 126
习题3.2 128
3.3 环的同构与同态 129
1.同构与同态 129
2.有关同态的一些定理 130
3.分式域 132
习题3.3 133
3.4 整环中的因子分解 134
1.一些基本概念 134
2.既约元和素元 135
3.最大公因子 135
习题3.4 137
3.5 惟一分解整环 137
1.惟一分解整环及其性质 137
2.主理想整环 139
3.欧氏整环 141
习题3.5 142
3.6 多项式分解问题 143
1.本原多项式及其性质 143
2.D[x]的分解性质 144
3.多项式的可约性判断 146
习题3.6 148
3.7 应用举例 148
1.编码问题 148
2.多项式编码方法及其实现 149
习题3.7 153
第3章小结 153
第4章 域论 155
4.1 域和域的扩张,几何作图问题 155
1.域的特征和素域 155
2.扩张次数,代数元和超越元 157
3.添加元素的扩张 158
4.代数扩张与有限扩张 159
5.几何作图问题 160
习题4.1 163
4.2 分裂域,代数基本定理 164
1.分裂域 164
2.代数基本定理 168
习题4.2 169
4.3 有限域,有限几何 170
1.有限域的构造及惟一性 170
2.有限域的元素的性质 172
3.Zp[x]中多项式的根 174
4.有限域的子域 175
5.有限域的自同构群 175
6.有限域上的元素和多项式的性质 176
7.有限几何 177
习题4.3 180
4.4 单位根,分圆问题 181
1.单位根 181
2.分圆问题 182
习题4.4 185
第4章小结 185
第5章 方程根式求解问题简介 188
5.1 多项式的Galois群 189
1.域和多项式的Galois群 189
2.多项式的Galois群的置换表示 190
3.多项式的Galois群的阶 191
4.多项式的Galois群的计算 192
习题5.1 194
5.2 群的可解性和代数方程的根式求解问题 194
1.群的可解性 194
2.可解群的性质 196
3.代数方程的根式可解性 197
习题5.2 198
第5章小结 198
附录 其他代数系简介 199
1.格与布尔代数 199
2.模的概念及例 201
3.代数 201
习题 202
习题提示与答案 203
符号索引 218
名词索引 220
参考文献 223