图书介绍

实变函数与泛函分析pdf电子书版本下载

实变函数与泛函分析
  • 姚建武编著 著
  • 出版社: 西安:陕西科学技术出版社
  • ISBN:7536940211
  • 出版时间:2005
  • 标注页数:270页
  • 文件大小:5MB
  • 文件页数:280页
  • 主题词:实变函数-师范大学-教材;泛函分析-师范大学-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

实变函数与泛函分析PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一篇 实变函数 3

第一章 集合与基数 3

1.1 集合及相关概念 3

1.2 集合的运算与文氏图表示 6

1.3 集合间的映射·基数 15

1.4 可数集 21

1.5 不可数集 25

习题1 28

部分习题解析 30

第二章 点集 34

2.1 度量空间·n维欧氏空间 34

2.2 聚点·内点边界点 40

2.3 开集·闭集与完备集 44

2.4 直线上的开集、闭集的构造·Cantor集 47

习题2 52

部分习题解析 53

3.1 Rn中Lebesgue外测度 55

第三章 测度论 55

3.2 内测度与可测集 59

3.3 Rn中的可测集合类 65

习题3 69

部分习题解析 71

第四章 可测函数 74

4.1 可测函数的概念及函数可测的充要条件 74

4.2 函数列的一致收敛·叶果洛夫定理 84

4.3 可测函数的构造·鲁津定理 87

4.4 依测度收敛 91

习题4 95

部分习题解析 97

第五章 积分论 99

5.1 黎曼(Riemann)积分 99

5.2 勒贝格积分的定义 101

5.3 勒贝格积分的运算性质 107

5.4 一般可积函数 110

5.5 积分的极限定理 116

5.6 勒贝格积分的几何意义 121

习题5 127

部分习题解析 129

第二篇 泛函分析 136

第六章 度量空间 136

6.1 度量空间的概念及例 136

6.2 度量空间的点集 141

6.3 极限与连续映射 143

6.4 稠密性 148

6.5 完备性 150

6.6 不动点原理 155

习题6 161

第七章 线性赋范空间 164

7.1 线性空间 164

7.2 线性赋范空间 167

7.3 强收敛 168

7.4 巴拿赫空间 171

7.5 巴拿赫空间的性质 174

习题7 179

第八章 线性有界算子与泛函 182

8.1 线性算子 182

8.2 线性算子的连续性 184

8.3 线性算子的有界性 186

8.4 有界线性算子的范数 191

8.5 有界线性算子空间 193

8.6 共轭空间 196

8.7 泛函延拓定理 210

习题8 222

第九章 希尔伯特空间 227

9.1 内积空间 227

9.2 希尔伯特空间 236

9.3 希尔伯特空间的基本定理及弱收敛 240

9.4 正交性及规范正交系 242

9.5 规范正交系的完备性 257

习题9 262

第六至九章部分习题解析 263

精品推荐