图书介绍
垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究pdf电子书版本下载
- 张彩香,王焰新编著 著
- 出版社: 北京:中国环境科学出版社
- ISBN:9787511102065
- 出版时间:2010
- 标注页数:223页
- 文件大小:18MB
- 文件页数:246页
- 主题词:垃圾处理-卫生填埋-研究
PDF下载
下载说明
垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 绪论 153
1.1 研究意义 153
1.1.1 研究背景 153
1.1.2 目标 154
1.1.3 研究路线 155
1.2 垃圾渗滤液 156
1.2.1 现代市政生活垃圾填埋场 157
1.2.2 垃圾填埋场渗滤液的特性 158
1.3 垃圾渗滤液中内分泌干扰物 160
1.3.1 天然和合成雌激素 161
1.3.2 邻苯二甲酸盐 162
1.3.3 烷基酚 164
1.3.4 植物雌激素 164
1.4 水环境中溶解有机质的表征 165
1.5 溶解有机质和有机污染物的相互作用 165
第2章 垃圾渗滤液中溶解有机质的表征 167
2.1 引言 167
2.2 材料与实验方式 167
2.2.1 样品采集 167
2.2.2 超滤分离DOM 168
2.2.3 DOM的分组 168
2.2.4 荧光光谱和紫外测量 168
2.2.5 分子量分组 169
2.2.6 元素分析 169
2.2.7 核磁共振分析 169
2.2.8 傅立叶变换红外分析 170
2.3 结果与讨论 170
2.3.1 渗滤液的化学特性 170
2.3.2 DOM分子量分布的超滤测定结果 171
2.3.3 DOM的树脂分组结果 173
2.3.4 元素分析 173
2.3.5 渗滤液组分的HPLC 174
2.3.6 紫外吸收光谱 176
2.3.7 荧光光谱 176
2.3.8 质子核磁共振 177
2.3.9 红外光谱 178
2.4 结论 178
第3章 垃圾渗滤液中有机污染物 180
3.1 运用GC/MS表征垃圾渗滤液中有机污染物 180
3.1.1 引言 180
3.1.2 材料和方法 180
3.1.3 结果与讨论 181
3.1.4 结论 183
3.2 运用SDE-GC×GC/ToFMS表征垃圾渗滤液中壬基酚同分异构体 183
3.2.1 引言 183
3.2.2 材料和方法 184
3.2.3 结果与讨论 186
3.2.4 结论 189
3.3 垃圾渗滤液中内分泌干扰物 189
3.3.1 引言 189
3.3.2 材料和方法 190
3.3.3 结果与讨论 193
3.3.4 结论 197
第4章 垃圾渗滤液中大分子有机物在线裂解分析 198
4.1 引言 198
4.2 材料和方法 199
4.2.1 酸解 199
4.2.2 碱解 200
4.2.3 氧化铜氧化 200
4.2.4 在线裂解-色谱-质谱(Py/GC/MS)和现场甲基化裂解-色谱-质谱(Py/GC/MS/TMAH) 200
4.2.5 核磁共振 200
4.2.6 GC/MS和元素分析 200
4.3 结果与讨论 201
4.3.1 在线裂解-色谱-质谱 201
4.3.2 现场甲基化裂解-色谱-质谱 201
4.4 结论 204
第5章 垃圾渗滤液中溶解有机质与内分泌干扰物的相互作用机理研究 206
5.1 垃圾渗滤液中DOM与EEDs的吸附机理 206
5.1.1 引言 206
5.1.2 材料和方法 206
5.1.3 结果与讨论 207
5.1.4 总结 210
5.2 垃圾渗滤液DOM对EEDs光催化降解的影响 210
5.2.1 引言 210
5.2.2 材料和方法 212
5.2.3 结果与讨论 213
5.2.4 结论 221
第6章 结论 223
List of Tables 6
Table 1-1 Composition of municipal garbage in some countries 6
Table 1-2 Composition of municipal garbage in some cities of China 6
Table 1-3 The percentage of different approaches of municipal garbage treatment in some developed countries 7
Table 1-4 The percentage of different approaches of treatment methods of municipal garbage in some cities of China 7
Table 1-5 The concentration range of pollutants in landfill leachate 9
Table 1-6 Changes of leachate properties with landfill age 9
Table 1-7 The leachate properties from the landfills in different cities in China 9
Table 1-8 Changes between leachate properties and treatment methods 11
Table 1-9 Concentrations of natural and synthetic hormones in wastewater treatment plants(WWTPs) 13
Table l-10 Reported concentrations of natural and synthetic estrogens in surface waters 14
Table 1-1l Physical properties of eighteen phthalate esters 14
Table l-12 Selected parameters controlling the environmental distribution of phthalate esters 15
Table 1-13 Reported phthalate concentrations in landfill leachate 16
Table 2-1 Characteristics of landfill leachate samples from the three landfills 26
Table 2-2 The distribution of total dissolved carbon and nitrogen in each fraction separated by UF 27
Table 2-3 The main parameters in each fraction separated by UF 27
Table 2-4 The distribution of total dissolved carbon and nitrogen in each fraction isolated by XAD-8/-4 resin 28
Table 2-5 Elemental compositions of isolated fractions from leachate DOM 30
Table 3-1 Organic matters in DOM from landfill leachate 48
Table 3-2 GC×GC retention times and mass spectral features of most abundant NP isomers,structure assignment of isomers based on comparison with data published recently and their synthetic standards 65
Table 3-3 QA/QC of SDE method proved by GC/MS 67
Table 3-4 Results of determination of NP isomers in landfill leachate samples Using GC×GC/ToFMS 68
Table 3-5 Objective substances of EEDs 71
Table 3-6 Ions for the quantitative analysis of silylation derivatives of target EEDs and internal standards 73
Table 3-7 The linear range for the target EEDs by GC/MS 74
Table 3-8 The results of BPA,E1,E2 and PAEs measurement 79
Table 3-9 Sterols in R and J-landfills 84
Table 4-1 Typical pyrolysis products of DOM 90
Table 4-2 Typical pyrolysis products of DOM 93
Table 4-3 Typical pyrolysis products of non-extractable residues after acid hydrolysis of R1-3 with in situ methylation 101
Table 5-1 Sorption coefficient(1gKOC Values)onto DOM and Ocanol-Water Partition Coefficients(1gKowValues)of Selected EEDs 108
Table 5-2 ESR data of R1-3 and the bound R1-3 with BPA,E2 and E1 110
Table 5-3 Characteristics of BPA,E2 and E1 117
Table 5-4 The influence of DOM on phototransformation parameters of BPA and E2 under sunlit irradiation 120
Table 5-5 Composition(as% of total carbon)of DOM isolates used in this study as determined by 1H NMR spectroscopy and extinction coefficients(ε)measured at 280 nm 122
Table 5-6 Pseudo-First-Order Rate Coefficients for Direct and Indirect Phototransformation of EEDs with catalyst TiO2 or H2O2 under UV irradiation 123
Table 5-7 Mass fragment ion(m/z)and relative abundance(%)of probable intermediates and BPA obtained from GC/MS spectra 128
List of Figures 5
Fig.1-1 Scheme of this research 5
Fig.2-1 Flow chart of organic matter size fractionation using filtration and ultrafiltration 22
Fig.2-2 Scheme of the tandem XAD-8/XAD-4 isolation procedure of DOM portion from the landfill leachate 23
Fig.2-3 Chromatograms of three DOM samples on ODS-C18 reserved-phase support 31
Fig.2-4 Comparision of chromatograms between R1-3 and R1-5 on ODS-C18 reserved-phase support 31
Fig.2-5 Chromatograms of isolated fraction by XAD resins on ODS-C 1 8 reserved-phase support 32
Fig.2-6 RID and UV254 nm chromatograms of unfractionated DOM from three landfill leachate samples and fractionated R1-3 33
Fig.2-7 Distribution of UV absorbance area(%)and RID%among the four distinct peaks of the HPSEC chromatograms for each of the DOM fractions 34
Fig.2-8 RID and UV254 nm chromatograms of fractionated R1-3 by XAD-8/-4 column 34
Fig.2-9 Distribution of UV absorbance area(%)and DOC%among the four distinct peaks of the HPSEC chromatograms for each of the DOM fractions 35
Fig.2-10 UV spectra of isolated fractions from leachate DOM 36
Fig.2-11 Typical fluorescence EEM observed in landfill leachate from R-landfill sampled inAugust,2006 37
Fig.2-12 SF spectra for original DOM and its six fractions at offsets of 20 nm 38
Fig.2-13 The relative abundance(%)ofeach peak(285,350,385,and 430 nm)in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,in leachate samples isolated by UF 39
Fig.2-14 The relative abundance(%)comparison between isolated fraction ofR1-3(05)and of R1-5 by XAD in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,Peak Ⅲ/Peak Ⅱ 39
Fig.2-15 The relative abundance(%)comparison between isolated fraction of R1-3(06)and of J1-3 by XAD in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,Peak Ⅲ/Peak Ⅱ 40
Fig.2-16 1H NMR spectra of fractions of DOM samples collected from different sources 41
Fig.2-17 Infrared spectra of DOM fractions from R-landfill 43
Fig.3-1 Total ion and selected ion chromatograms(m/z=85)of extracted R1-3 without pH adjustment using n-hexane 47
Fig.3-2 Total ion and selected ion chromatograms(m/z=60)of extracted R1-3 with pH>12 and pH<2 using DCM 48
Fig.3-3 Total ion chromatograms and selected ion chromatograms(m/z=74)of adsorbed organic compounds eluated by methanol 53
Fig.3-4 Total ion chromatograms(TMS)and zoom out between 55 and 65 min extracted using methanol 53
Fig.3-5 Total ion chromatograms of three fractions extracted from three landfills 54
Fig.3-6 Relative proportions of nine compound classes of organic matter of different treatment and membrane filterate samples obtained by GC/MS 55
Fig.3-7 Molecular weight distribution during different treatment processes detected by HPLC with RID and UV detectors 56
Fig.3-8 Contour plot and its 1D GC of TNP using GC×GC/ToFMS 61
Fig.3-9 Zoomed section of contour plot of 4-NPs compared to synthetic mixture of NP including NP194(36),NP93(a,b),NP112,NP111(a,b),NP152,NP65 and NP9 62
Fig.3-10 Peak table for Fig.3-8 62
Fig.3-11 Chromatograph of TNP compared to synthetic mixture of NP using GC/MS 63
Fig.3-12 Mass spectra and chromatogram of synthetic NP36 and NP93 standard using GC/MS and GC×GC/ToFMS 64
Fig.3-13 Mass spectra of unidentified para-NP isomers 66
Fig.3-14 Total ion chromatograph(TIC)of leachate from new cell of East Oaks landfill analyzed by SDE coupled with GC×GC/ToFMS 67
Fig.3-15 Dumping blocks,leachate treatment facilities and sampling points 72
Fig.3-16 Full scan chromatogram of target EEDs 73
Fig.3-17 The recovery of EEDs from different elution solvents 75
Fig.3-18 The effects of NaCl concentration and pH on the recoveries of EEDs 75
Fig.3-19 The effect of aquatic matrices on the recovery of EEDs 76
Fig.3-20 The effect of extraction methods on the recovery of EEDs 77
Fig.3-21 The seasonal variation of EEDs in raw leachate 78
Fig.3-22 The relationship between the concentration of BPA and DEHP and the DOC at the sampling points in the leachate conventional treatment process 80
Fig.3-23 The concentration of BPA and DEHP at the sampling points in the leachate ultrafiltrate treatment processs 81
Fig.3-24 Chromatograms of the sterols in landfill leachate 81
Fig.4-1 Analysis scheme 87
Fig.4-2 Reconstructed ion current of pyrolysis products at 610℃ of R1-6 from R-landfill 91
Fig.4-3 Pyrolysis/methylation(TMAH)-GC/MS chromatograms of R1-6 at 610℃,R1-6 at 700℃,and R1-5 at 610℃ 96
Fig.4-4 Pyrolysis/methylation-GC/MS chromatograms of R1-6,H1-6 and J1-6 at 610℃ 97
Fig.4-5 Percentage of the major groups of pyrolytic products of HMW from three landfills 97
Fig.4-6 GC/MS of(a)the ether extractable compounds derivated by TMS from acid hydrolysis of R1-3,and(b)DCM extractable compounds derivated by TMS after ether extraction of acid hydrolysis of R1-3 99
Fig.4-7 Total ion chromatogram(TIC)and specific ion chromatogram(SIC,m/z=74) of the pyrolysates of non extractable residues after acid hydrolysis of R1-3 with in situ methylation 100
Fig.4-8 Total ion chromatogram(TIC)of the pyrolysates of non extractable residues after alkaline oxidation of R1-3 with in situ methylation 103
Fig.5-1 Adsorption isotherms for the bound with EEDs 108
Fig.5-2 1H NMR spectra of R1-3 and bound R1-3 with BPA,E2 and E1 109
Fig.5-3 Narrow range ESR spectra of untreated R1-3 and bound R1-3 with BPA,E2 and E1 111
Fig.5-4 FTIR of R1-3 and bound R1-3 with BPA,E2 and E1 111
Fig.5-5 Percent removal of PAEs by various concentrations of DOM(R1-3) 112
Fig.5-6 Expected removal percentage of a pollutant with lg Koc of 1-7 using 50,100,and 150 mg/L DOM 113
Fig.5-7 Schematic illustration of the photoreactor 117
Fig.5-8 Photochemical transformation for(a)BPA,and(b)E2 in the presence and the absence of DOM isolated from three landfill leachates under sunlit irradiation 119
Fig.5-9 UV-vis absorbance spectra for BPA,E2 and E1 119
Fig.5-10 ESR spectra of R1-3 before and after irradiation 121
Fig.5-11 The scheme of proposed mechanism of photosensitized degradation of BPA involved dissolved oxygen in HS solution 122
Fig.5-12 Photodecomposition behavior of BPA,E2 and E1 in DOM by TiO2 powder under UV irradiation 124
Fig.5-13 FTIR of BPA(a)after photodegradation,and(b)BPA standard 125
Fig.5-14 UV absorption spectra of BPA before and after photodegradation 125
Fig.5-15 Evolution of HPLC different chromatograms between initial and photocatalytic treatment of a BPA with R1-3 solution 126
Fig.5-16 GC/MS chromatograms of sample solution after irradiation 127
Fig.5-17 Proposed degradation mechanism of BPA under UV irradiation with catalvzer 128
Fig.5-18 FTIR diagrams of E2 and E1 130
Fig.5-19 Evolution of HPLC chromatograms of(a)different chromatograms of E1 with R1-3 solution between initial and photocatalytic treatment;(b)those of E2 with R1-3 during photocatalytic treatment 130
Fig.5-20 GC/MS chromatograms of E2+E1 solution after irradiation 131