图书介绍

INTRODUCTION TO SOLID-STATE NMR SPECTROSCOPYpdf电子书版本下载

INTRODUCTION TO SOLID-STATE NMR SPECTROSCOPY
  • MELINDA J.DUER 著
  • 出版社: BLACKWELL SCIENCE
  • ISBN:1405109149
  • 出版时间:2004
  • 标注页数:349页
  • 文件大小:78MB
  • 文件页数:362页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

INTRODUCTION TO SOLID-STATE NMR SPECTROSCOPYPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 The Basics of NMR, 1

1.1 The vector model of pulsed NMR, 1

1.1.1 Nuclei in a static,uniform magnetic field, 2

1.1.2 The effect of rf pulses, 3

1.2 The quantum mechanical picture:hamiltonians and the Schrodinger equation, 5

Box 1.1 6

Quantum mechanics and NMR, 6

Wavefunctions, 6

Operators,physical observables and expectation values, 7

Schrodinger’s equation,eigenfunctions and eigenvalues, 7

Spin operators and spin states, 8

Dirac’s bra-ket notation, 11

Matrices, 11

1.2.1 Nuclei in a static,uniform field, 12

1.2.2 The effect of rf pulses, 15

Box 1.2 19

Exponential operators,rotation operators and rotations, 19

Rotation of vectors,wavefunctions and operators(active rotations), 20

Rotation of axis frames, 23

Representation of rf fields, 25

Euler angles, 25

Rotations with Euler angles, 26

Rotation of Cartesian axis frames, 27

1.3 The density matrix representation and coherences, 29

1.3.1 Coherences and populations, 30

1.3.2 The density operator at thermal equilibrium, 33

1.3.3 Time evolution of the density matrix, 34

1.4 Nuclear spin interactions, 37

1.4.1 Interaction tensors, 41

1.5 General features of Fourier transform NMR experiments, 43

1.5.1 Multidimensional NMR, 43

1.5.2 Phase cycling, 46

1.5.3 Quadrature detection, 48

Box 1.3 53

The NMR spectrometer, 53

Generating rf pulses, 53

Detecting the NMR signal, 56

Notes, 58

References, 59

2 Essential Techniques for Solid-State NMR, 60

2.1 Introduction, 60

2.2 Magic-angle spinning (MAS), 61

2.2.1 Spinning sidebands, 62

2.2.2 Rotor or rotational echoes, 67

2.2.3 Removing spinning sidebands, 67

2.2.4 Setting the magic-angle and spinning rate, 72

2.2.5 Magic-angle spinning for homonuclear dipolar couplings, 75

2.3 Heteronuclear decoupling, 77

2.3.1 High-power decoupling, 78

2.3.2 Other heteronuclear decoupling sequences, 81

2.4 Homonuclear decoupling, 83

2.4.1 Implementing homonuclear decoupling sequences, 83

Box 2.1 86

Average hamiltonian theory and the toggling frame, 86

Average hamiltonian theory, 86

The toggling frame and the WAHUHA pulse sequence, 89

2.5 Cross-polarization, 96

2.5.1 Theory, 97

2.5.2 Setting up the cross-polarization experiment, 101

Box 2.2 106

Cross-polarization and magic-angle spinning, 106

2.6 Echo pulse sequences, 110

Notes, 113

References, 114

3 Shielding and Chemical Shift:Theory and Uses, 116

3.1 Theory, 116

3.1.1 Introduction, 116

3.1.2 The chemical shielding hamiltoman, 117

3.1.3 Experimental manifestations of the shielding tensor, 120

3.1.4 Definition of the chemical shift, 123

3.2 The relationship between the shielding tensor and electronic structure, 125

3.3 Measuring chemical shift anisotropies, 131

3.3.1 Magic-angle spinning with recoupling pulse sequences, 132

3.3.2 Variable-angle spinning experiments, 135

3.3.3 Magic-angle turning, 138

3.3.4 Two-dimensional separation of spinning sideband patterns, 141

3.4 Measuring the orientation of chemical shielding tensors in the molecular frame for structure determination, 145

Notes, 149

References, 149

4 Dipolar Coupling:Theory and Uses, 151

4.1 Theory, 151

4.1.1 Homonuclear dipolar coupling, 154

Box 4.1 156

Basis sets for multispin systems, 156

4.1.2 The effect of homonuclear dipolar coupling on a spin system, 157

4.1.3 Heteronuclear dipolar coupling, 160

4.1.4 The effect of heteronuclear dipolar coupling on the spin system, 162

4.1.5 Heteronuclear spin dipolar coupled to a homonuclear network of spins, 163

4.1.6 The spherical tensor form of the dipolar hamiltonian, 164

Box 4.2 164

The dipolar hamiltonian in terms of spherical tensor operators, 164

Spherical tensor operators, 165

Interaction tensors, 167

The homonuclear dipolar hamiltonian under static and MAS conditions, 167

4.2 Introduction to the uses of dipolar coupling, 172

4.3 Techniques for measuring homonuclear dipolar couplings, 175

4.3.1 Recoupling pulse sequences, 175

Box 4.3 180

Analysis of the DRAMA pulse sequence, 180

Simulating powder patterns from the DRAMA experiment, 184

4.3.2 Double-quantum filtered experiments, 185

Box 4.4 189

Excitation of double-quantum coherence under magic-angle spinning, 189

The form of the reconversion pulse sequence:the need for time-reversal symmetry, 191

Analysis of the double-quantum filtered data, 195

Box 4.5 196

Analysis of the C7 pulse sequence for exciting double-quantum coherence in dipolar-coupled spin pairs, 196

4.3.3 Rotational resonance, 199

Box 4.6 202

Theory of rotational resonance, 202

Effect of HΔ term on the density operator, 203

The hamiltonian in the new rotated frame, 204

The average hamiltonian, 205

4.4 Techniques for measuring heteronuclear dipolar couplings, 207

4.4.1 Spin-echo double resonance (SEDOR), 207

4.4.2 Rotational-echo double resonance (REDOR), 208

Box 4.7 210

Analysis of the REDOR experiment, 210

4.5 Techniques for dipolar-coupled quadrupolar-spin-1/2pairs, 215

4.5.1 Transfer of population in double resonance (TRAPDOR), 216

4.5.2 Rotational-echo adiabatic-passage double-resonance(REAPDOR), 219

4.6 Techniques for measuring dipolar couplings between quadrupolar nuclei, 220

4.7 Correlation experiments, 221

4.7.1 Homonuclear correlation experiments for spin- systems, 221

4.7.2 Homonuclear correlation experiments for quadrupolar spin systems, 224

4.7.3 Heteronuclear correlation experiments for spin , 226

4.8 Spin-counting experiments, 227

4.8.1 The formation of multiple-quantum coherences, 228

4.8.2 Implementation of spin-counting experiments, 231

Notes, 232

References, 233

5 Quadrupole Coupling:Theory and Uses, 235

5.1 Introduction, 235

5.2 Theory, 237

5.2.1 The quadrupole hamiltonian, 237

Box 5.1 242

The quadrupole hamiltonian in terms of spherical tensor operators:the effect of the rotating frame and magic-angle spinning, 242

The quadrupole hamiltonian in terms of spherical tensor operators, 242

The effect of the rotating frame:first- and second-order average hamiltonians for the quadrupole interaction, 243

The energy levels under quadrupole coupling, 248

The effect of magic-angle spinning, 248

5.2.2 The effect of rf pulses, 249

5.2.3 The effects of quadrupolar nuclei on the spectra of spin-1/2 nuclei, 252

5.3 High-resolution NMR experiments for half-integer quadrupolar nuclei, 255

5.3.1 Magic-angle spinning (MAS), 256

5.3.2 Double rotation (DOR), 259

5.3.3 Dynamic-angle spinning (DAS), 260

5.3.4 Multiple-quantum magic-angle spinning (MQMAS), 263

5.3.5 Satellite transition magic-angle spinning (STMAS), 268

5.3.6 Recording two-dimensional datasets for DAS,MQMAS and STMAS, 275

5.4 Other techniques for half-integer quadrupole nuclei, 280

5.4.1 Quadrupole nutation, 282

5.4.2 Cross-polarization, 285

Notes, 290

References, 291

6 NMR Techniques for Studying Molecular Motion in Solids, 293

6.1 Introduction, 293

6.2 Powder lineshape analysis, 296

6.2.1 Simulating powder pattern lineshapes, 297

6.2.2 Resolving powder patterns, 305

6.2.3 Using homonuclear dipolar-coupling lineshapes - the WISE experiment, 311

6.3 Relaxation time studies, 313

6.4 Exchange experiments, 316

6.4.1 Achieving pure absorption lineshapes in exchange spectra, 318

6.4.2 Interpreting two-dimensional exchange spectra, 320

6.5 2H NMR, 322

6.5.1 Measuring 2H NMR spectra, 323

6.5.2 2H lineshape simulations, 328

6.5.3 Relaxation time studies, 329

6.5.4 2H exchange experiments, 330

6.5.5 Resolving 2H powder patterns, 332

Notes, 334

References, 335

Appendix A NMR Properties of Commonly Observed Nuclei, 336

Appendix B The General Form of a Spin Interaction Hamiltonian in Terms of Spherical Tensors and Spherical Tensor Operators, 337

References, 343

Index, 344

精品推荐