图书介绍

An Introduction To The Theory of Numberspdf电子书版本下载

An Introduction To The Theory of Numbers
  • I.M.Vinogradov 著
  • 出版社: Pergmon Press
  • ISBN:
  • 出版时间:1955
  • 标注页数:155页
  • 文件大小:18MB
  • 文件页数:161页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

An Introduction To The Theory of NumbersPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 THE THEORY OF DIVISIBILITY 1

1 Fundamental concepts and theorems 1

2 The greatest common divisor 2

3 The least common multiple 5

4 The Euclidean Algorithm and continued fractions 7

5 Prime numbers 11

6 Uniqueness of factorization into prime factors 12

Problems for Chapter 1 14

Numerical examples for Chapter 1 16

2 FUNDAMENTAL FUNCTIONS OF THE THEORY OF NUMBERS 17

1 Functions [x],{x} 17

2 Summation over divisors of an integer 18

3 The Moebius function 19

4 Euler's function 20

Problems for Chapter 2 22

Numerical examples for Chapter 2 30

3 CONGRUENCES 31

1 Fundamental concepts 31

2 Properties of congruences similar to properties of equalities 32

2 Further properties of congruences 34

4 Complete system of residues 35

5 The reduced system of residues 36

6 Theorems of Euler and Fermat 37

Problems for Chapter 3 38

Numerical examples for Chapter 3 43

4 LINEAR CONGRUENCES 44

1 Fundamental concepts 44

2 Linear congruences 44

3 Simultaneous linear congruences 47

4 Congruences of any degree to a prime modulus 48

5 Congruences of any degree to a composite modulus 49

Problems for Chapter 4 52

Numerical examples for Chapter 4 56

5 QUADRATIC CONGRUENCES 58

1 General theorems 58

2 Legendre's symbol 59

3 Jacobi's symbol 64

4 The case of a composite modulus 67

Problems for Chapter 5 70

Numerical examples for Chapter 5 75

6 PRIMITIVE ROOTS AND INDICES 76

1 General theorems 76

2 Primitive roots to moduli pα and 2pα 76

3 Finding primitive roots to moduli pα and 2pα 78

4 Indices to moduli pα and 2pα 79

5 Applications of the theory of indices 81

6 Indices to modulus 2α 84

7 Indices to any composite modulus 86

Problems for Chapter 6 87

Numerical examples for Chapter 6 93

SOLUTIONS TO PROBLEMS 95

Solutions to Chapter 1 95

Solutions to Chapter 2 98

Solutions to Chapter 3 111

Solutions to Chapter 4 120

Solutions to Chapter 5 126

Solutions to Chapter 6 135

ANSWERS TO NUMERICAL EXAMPLES 145

Answers to Chapter 1 145

Answers to Chapter 2 145

Answers to Chapter 3 145

Answers to Chapter 4 145

Answers to Chapter 5 146

Answers to Chapter 6 146

Tables of Indices 148

Table of Odd Primes < 4000 and of their least primitive roots 154

精品推荐