图书介绍

MICROELECTRONIC CIRCUIT DESIGNpdf电子书版本下载

MICROELECTRONIC CIRCUIT DESIGN
  • RICHARD C.JAEGER AND TRAVIS N.BLALOCK 著
  • 出版社: MCGRAW HILL
  • ISBN:0073380458
  • 出版时间:2011
  • 标注页数:1334页
  • 文件大小:369MB
  • 文件页数:1360页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

MICROELECTRONIC CIRCUIT DESIGNPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART ONE SOLID STATE ELECTRONIC AND DEVICES 1

CHAPTER 1 INTRODUCTION TO ELECTRONICS 3

1.1 A Brief History of Electronics:From Vacuum Tubes to Giga-Scale Integration 5

1.2 Classifiication of Electronic Signals 8

1.2.1 Digital Signals 9

1.2.2 Analog Signals 9

1.2.3 A/D and D/A Converters—Bridging the Analog and Digital Domains 10

1.3 Notational Conventions 12

1.4 Problem-Solving Approach 13

1.5 Important Concepts from Circuit Theory 15

1.5.1 Voltage and Current Division 15

1.5.2 Thevenin and Norton Circuit Representations 16

1.6 Frequency Spectrum of Electronic Signals 21

1.7 Amplifiers 22

1.7.1 Ideal Operational Amplifiers 23

1.7.2 Amplifier Frequency Response 25

1.8 Element Variations in Circuit Design 26

1.8.1 Mathematical Modeling of Tolerances 26

1.8.2 Worst-Case Analysis 27

1.8.3 Monte Carlo Analysis 29

1.8.4 Temperature Coeffiicients 32

1.9 Numeric Precision 34

Summary 34

Key Terms 35

References 36

Additional Reading 36

Problems 37

CHAPTER 2 SOLID-STATE ELECTRONICS 42

2.1 Solid-State Electronic Materials 44

2.2 Covalent Bond Model 45

2.3 Drift Currents and Mobility in Semiconductors 48

2.3.1 Drift Currents 48

2.3.2 Mobility 49

2.3.3 Velocity Saturation 49

2.4 Resistivity of Intrinsic Silicon 50

2.5 Impurities in Semiconductors 51

2.5.1 Donor Impurities in Silicon 52

2.5.2 Acceptor Impurities in Silicon 52

2.6 Electron and Hole Concentrations in Doped Semiconductors 52

2.6.1 n-Type Material (ND > NA) 53

2.6.2 p-Type Material (NA >ND) 54

2.7 Mobility and Resistivity in Doped Semiconductors 55

2.8 Diffusion Currents 59

2.9 Total Current 60

2.10 Energy Band Model 61

2.10.1 Electron-Hole Pair Generation in an Intrinsic Semiconductor 61

2.10.2 Energy Band Model for a Doped Semiconductor 62

2.10.3 Compensated Semiconductors 62

2.11 Overview of Integrated Circuit Fabrication 64

Summary 67

Key Terms 68

Reference 69

Additional Reading 69

Important Equations 69

Problems 70

CHAPTER 3 SOLID-STATE DIODES AND DIODE CIRCUITS 74

3.1 The pn Junction Diode 75

3.1.1 pn Junction Electrostatics 75

3.1.2 Internal Diode Currents 79

3.2 The i-v Characteristics of the Diode 80

3.3 The Diode Equation:A Mathematical Model for the Diode 82

3.4 Diode Characteristics Under Reverse,Zero,and Forward Bias 85

3.4.1 Reverse Bias 85

3.4.2 Zero Bias 85

3.4.3 Forward Bias 86

3.5 Diode Temperature Coefficient 89

3.6 Diodes Under Reverse Bias 89

3.6.1 Saturation Current in Real Diodes 90

3.6.2 Reverse Breakdown 91

3.6.3 Diode Model for the Breakdown Region 92

3.7 pn Junction Capacitance 92

3.7.1 Reverse Bias 92

3.7.2 Forward Bias 93

3.8 Schottky Barrier Diode 93

3.9 Diode SPICE Model and Layout 94

3.10 Diode Circuit Analysis 96

3.10.1 Load-Line Analysis 96

3.10.2 Analysis Using the Mathematical Model for the Diode 98

3.10.3 The Ideal Diode Model 102

3.10.4 Constant Voltage Drop Model 104

3.10.5 Model Comparison and Discussion 105

3.11 Multiple-Diode Circuits 106

3.12 Analysis of Diodes Operating in the Breakdown Region 109

3.12.1 Load-Line Analysis 109

3.12.2 Analysis with the Piecewise Linear Model 109

3.12.3 Voltage Regulation 110

3.12.4 Analysis Including Zener Resistance 111

3.12.5 Line and Load Regulation 112

3.13 Half-Wave Rectifiier Circuits 113

3.13.1 Half-Wave Rectifiier with Resistor Load 113

3.13.2 Rectifier Filter Capacitor 114

3.13.3 Half-Wave Rectifiier with RC Load 115

3.13.4 Ripple Voltage and Conduction Interval 116

3.13.5 Diode Current 118

3.13.6 Surge Current 120

3.13.7 Peak-Inverse-Voltage (PIV) Rating 120

3.13.8 Diode Power Dissipation 120

3.13.9 Half-Wave Rectifier with Negative Output Voltage 121

3.14 Full-Wave Rectifiier Circuits 123

3.14.1 Full-Wave Rectifier with Negative Output Voltage 124

3.15 Full-Wave Bridge Rectification 125

3.16 Rectifiier Comparison and Design Tradeoffs 125

3.17 Dynamic Switching Behavior of the Diode 129

3.18 Photo Diodes,Solar Cells,and Light-Emitting Diodes 130

3.18.1 Photo Diodes and Photodetectors 130

3.18.2 Power Generation from Solar Cells 131

3.18.3 Light-Emitting Diodes (LEDs) 132

Summary 133

Key Terms 134

Reference 135

Additional Reading 135

Problems 135

CHAPTER 4 FIELD-EFFECT TRANSISTORS 145

4.1 Characteristics of the MOS Capacitor 146

4.1.1 Accumulation Region 147

4.1.2 Depletion Region 148

4.1.3 Inversion Region 148

4.2 The NMOS Transistor 148

4.2.1 Qualitative i-v Behavior of the NMOS Transistor 149

4.2.2 Triode Region Characteristics of the NMOS Transistor 150

4.2.3 On Resistance 153

4.2.4 Saturation of the i-v Characteristics 154

4.2.5 Mathematical Model in the Saturation (Pinch-Off) Region 155

4.2.6 Transconductance 157

4.2.7 Channel-Length Modulation 157

4.2.8 Transfer Characteristics and Depletion-Mode MOSFETS 158

4.2.9 Body Effect or Substrate Sensitivity 159

4.3 PMOS Transistors 161

4.4 MOSFET Circuit Symbols 163

4.5 Capacitances in MOS Transistors 165

4.5.1 NMOS Transistor Capacitances in the Triode Region 165

4.5.2 Capacitances in the Saturation Region 166

4.5.3 Capacitances in Cutoff 166

4.6 MOSFET Modeling in SPICE 167

4.7 MOS Transistor Scaling 169

4.7.1 Drain Current 169

4.7.2 Gate Capacitance 169

4.7.3 Circuit and Power Densities 170

4.7.4 Power-Delay Product 170

4.7.5 Cutoff Frequency 171

4.7.6 High Field Limitations 171

4.7.7 Subthreshold Conduction 172

4.8 MOS Transistor Fabrication and Layout Design Rules 172

4.8.1 Minimum Feature Size and Alignment Tolerance 173

4.8.2 MOS Transistor Layout 173

4.9 Biasing the NMOS Field-Effect Transistor 176

4.9.1 Why Do We Need Bias? 176

4.9.2 Constant Gate-Source Voltage Bias 178

4.9.3 Load Line Analysis for the Q-Point 181

4.9.4 Four-Resistor Biasing 182

4.10 Biasing the PMOS Field-Effect Transistor 188

4.11 The Junction Field-Effect Transistor (IFET) 190

4.11.1 The JFET with Bias Applied 191

4.11.2 JFET Channel with Drain-Source Bias 191

4.11.3 n-Channel JFET i-v Characteristics 193

4.11.4 The p-Channel JFET 195

4.11.5 Circuit Symbols and JFET Model Summary 195

4.11.6 JFET Capacitances 196

4.12 JFET Modeling in SPICE 197

4.13 Biasing the JFET and Depletion-Mode MOSFET 198

Summary 200

Key Terms 202

References 203

Problems 204

CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS 217

5.1 Physical Structure of the Bipolar Transistor 218

5.2 The Transport Model for the npn Transistor 219

5.2.1 Forward Characteristics 220

5.2.2 Reverse Characteristics 222

5.2.3 The Complete Transport Model Equations for Arbitrary Bias Conditions 223

5.3 The pnp Transistor 225

5.4 Equivalent Circuit Representations for the Transport Models 227

5.5 The i-v Characteristics of the Bipolar Transistor 228

5.5.1 Output Characteristics 228

5.5.2 Transfer Characteristics 229

5.6 The Operating Regions of the Bipolar Transistor 230

5.7 Transport Model Simplifiications 231

5.7.1 Simplified Model for the Cutoff Region 231

5.7.2 Model Simplifications for the Forward-Active Region 233

5.7.3 Diodes in Bipolar Integrated Circuits 239

5.7.4 Simplifiied Model for the Reverse-Active Region 240

5.7.5 Modeling Operation in the Saturation Region 242

5.8 Nonideal Behavior of the Bipolar Transistor 245

5.8.1 Junction Breakdown Voltages 246

5.8.2 Minority-Carrier Transport in the Base Region 246

5.8.3 Base Transit Time 247

5.8.4 Diffusion Capacitance 249

5.8.5 Frequency Dependence of the Common-Emitter Current Gain 250

5.8.6 The Early Effect and Early Voltage 250

5.8.7 Modeling the Early Effect 251

5.8.8 Origin of the Early Effect 251

5.9 Transconductance 252

5.10 Bipolar Technology and SPICE Model 253

5.10.1 Qualitative Description 253

5.10.2 SPICE Model Equations 254

5.10.3 High-Performance Bipolar Transistors 255

5.11 Practical Bias Circuits for the BJT 256

5.11.1 Four-Resistor Bias Network 258

5.11.2 Design Objectives for the Four-Resistor Bias Network 260

5.11.3 Iterative Analysis of the Four-Resistor Bias Circuit 266

5.12 Tolerances in Bias Circuits 266

5.12.1 Worst-Case Analysis 267

5.12.2 Monte Carlo Analysis 269

Summary 272

Key Terms 274

References 274

Problems 275

PART TWO DIGITAL ELECTRONICS 285

CHAPTER 6 INTRODUCTION TO DIGITAL ELECTRONICS 287

6.1 Ideal Logic Gates 289

6.2 Logic Level Definitions and Noise Margins 289

6.2.1 Logic Voltage Levels 291

6.2.2 Noise Margins 291

6.2.3 Logic Gate Design Goals 292

6.3 Dynamic Response of Logic Gates 293

6.3.1 Rise Time and Fall Time 293

6.3.2 Propagation Delay 294

6.3.3 Power-Delay Product 294

6.4 Review of Boolean Algebra 295

6.5 NMOS Logic Design 297

6.5.1 NMOS Inverter with Resistive Load 298

6.5.2 Design of the W/L Ratio of Ms 299

6.5.3 Load Resistor Design 300

6.5.4 Load-Line Visualization 300

6.5.5 On-Resistance of the Switching Device 302

6.5.6 Noise Margin Analysis 303

6.5.7 Calculation of V IL and VOH 303

6.5.8 Calculation of V I H and VOL 304

6.5.9 Load Resistor Problems 305

6.6 Transistor Alternatives to the Load Resistor 306

6.6.1 The NMOS Saturated Load Inverter 307

6.6.2 NMOS Inverter with a Linear Load Device 315

6.6.3 NMOS Inverter with a Depletion-Mode Load 316

6.6.4 Static Design of the Pseudo NMOS Inverter 319

6.7 NMOS Inverter Summary and Comparison 323

6.8 NMOS NAND and NOR Gates 324

6.8.1 NOR Gates 325

6.8.2 NAND Gates 326

6.8.3 NOR and NAND Gate Layouts in NMOS Depletion-Mode Technology 327

6.9 Complex NMOS Logic Design 328

6.10 Power Dissipation 333

6.10.1 Static Power Dissipation 333

6.10.2 Dynamic Power Dissipation 334

6.10.3 Power Scaling in MOS Logic Gates 335

6.11 Dynamic Behavior of MOS Logic Gates 337

6.11.1 Capacitances in Logic Circuits 337

6.11.2 Dynamic Response of the NMOS Inverter with a Resistive Load 338

6.11.3 Pseudo NMOS Inverter 343

6.11.4 A Final Comparison of NMOS Inverter Delays 344

6.11.5 Scaling Based Upon Reference Circuit Simulation 346

6.11.6 Ring Oscillator Measurement of Intrinsic Gate Delay 346

6.11.7 Unloaded Inverter Delay 347

6.12 PMOS Logic 349

6.12.1 PMOS Inverters 349

6.12.2 NOR and NAND Gates 352

Summary 352

Key Terms 354

References 355

Additional Reading 355

Problems 355

CHAPTER 7 COMPLEMENTARY MOS (CMOS) LOGIC DESIGN 367

7.1 CMOS Inverter Technology 368

7.1.1 CMOS Inverter Layout 370

7.2 Static Characteristics of the CMOS Inverter 370

7.2.1 CMOS Voltage Transfer Characteristics 371

7.2.2 Noise Margins for the CMOS Inverter 373

7.3 Dynamic Behavior of the CMOS Inverter 375

7.3.1 Propagation Delay Estimate 375

7.3.2 Rise and Fall Times 377

7.3.3 Performance Scaling 377

7.3.4 Delay of Cascaded Inverters 379

7.4 Power Dissipation and Power Delay Product in CMOS 380

7.4.1 Static Power Dissipation 380

7.4.2 Dynamic Power Dissipation 381

7.4.3 Power-Delay Product 382

7.5 CMOS NOR and NAND Gates 384

7.5.1 CMOS NOR Gate 384

7.5.2 CMOS NAND Gates 387

7.6 Design of Complex Gates in CMOS 388

7.7 Minimum Size Gate Design and Performance 393

7.8 Dynamic Domino CMOS Logic 395

7.9 Cascade Buffers 397

7.9.1 Cascade Buffer Delay Model 397

7.9.2 Optimum Number of Stages 398

7.10 The CMOS Transmission Gate 400

7.11 CMOS Latchup 401

Summary 404

Key Terms 405

References 406

Problems 406

CHAPTER 8 MOS MEMORY AND STORAGE CIRCUITS 416

8.1 Random Access Memory 417

8.1.1 Random Access Memory (RAM) Architecture 417

8.1.2 A 256-Mb Memory Chip 418

8.2 Static Memory Cells 419

8.2.1 Memory Cell Isolation and Access—The 6-T Cell 422

8.2.2 The Read Operation 422

8.2.3 Writing Data into the 6-T Cell 426

8.3 Dynamic Memory Cells 428

8.3.1 The One-Transistor Cell 430

8.3.2 Data Storage in the 1-T Cell 430

8.3.3 Reading Data from the 1-T Cell 431

8.3.4 The Four-Transistor Cell 433

8.4 Sense Amplifiers 434

8.4.1 A Sense Amplifier for the 6-T Cell 434

8.4.2 A Sense Amplifier for the 1-T Cell 436

8.4.3 The Boosted Wordline Circuit 438

8.4.4 Clocked CMOS Sense Amplifiiers 438

8.5 Address Decoders 440

8.5.1 NOR Decoder 440

8.5.2 NAND Decoder 440

8.5.3 Decoders in Domino CMOS Logic 443

8.5.4 Pass-Transistor Column Decoder 443

8.6 Read-Only Memory (ROM) 444

8.7 Flip-Flops 447

8.7.1 RS Flip-Flop 449

8.7.2 The D-Latch Using Transmission Gates 450

8.7.3 A Master-Slave D Flip-Flop 450

Summary 451

Key Terms 452

References 452

Problems 453

CHAPTER 9 BIPOLAR LOGIC CIRCUITS 460

9.1 The Current Switch (Emitter-Coupled Pair) 461

9.1.1 Mathematical Model for Static Behavior of the Current Switch 462

9.1.2 Current Switch Analysis for V I > VREF 463

9.1.3 Current Switch Analysis for V I < VREF 464

9.2 The Emitter-Coupled Logic (ECL) Gate 464

9.2.1 ECL Gate with vI = VH 465

9.2.2 ECL Gate with vI = VL 466

9.2.3 Input Current of the ECL Gate 466

9.2.4 ECL Summary 466

9.3 Noise Margin Analysis for the ECL Gate 467

9.3.1 VI L,VOH,VI H,and VOL 467

9.3.2 Noise Margins 468

9.4 Current Source Implementation 469

9.5 The ECL OR-NOR Gate 471

9.6 The Emitter Follower 473

9.6.1 Emitter Follower with a Load Resistor 474

9.7 “Emitter Dotting” or “Wired-OR” Logic 476

9.7.1 Parallel Connection of Emitter-Follower Outputs 477

9.7.2 The Wired-OR Logic Function 477

9.8 ECL Power-Delay Characteristics 477

9.8.1 Power Dissipation 477

9.8.2 Gate Delay 479

9.8.3 Power-Delay Product 480

9.9 Current Mode Logic 481

9.9.1 CML Logic Gates 481

9.9.2 CML Logic Levels 482

9.9.3 VEE Supply Voltage 482

9.9.4 Higher-Level CML 483

9.9.5 CML Power Reduction 484

9.9.6 NMOS CML 485

9.10 The Saturating Bipolar Inverter 487

9.10.1 Static Inverter Characteristics 488

9.10.2 Saturation Voltage of the Bipolar Transistor 488

9.10.3 Load-Line Visualization 491

9.10.4 Switching Characteristics of the Saturated BJT 491

9.11 A Transistor-Transistor Logic (TTL) Prototype 494

9.11.1 TTL Inverter for vI = VL 494

9.11.2 TTL Inverter for vI = VH 495

9.11.3 Power in the Prototype TTL Gate 496

9.11.4 VIH,VIL,and Noise Margins for the TTL Prototype 496

9.11.5 Prototype Inverter Summary 498

9.11.6 Fanout Limitations of the TTL Prototype 498

9.12 The Standard 7400 Series TTL Inverter 500

9.12.1 Analysis for V I = VL 500

9.12.2 Analysis for V I = VH 501

9.12.3 Power Consumption 503

9.12.4 TTL Propagation Delay and Power-Delay Product 503

9.12.5 TTL Voltage Transfer Characteristic and Noise Margins 503

9.12.6 Fanout Limitations of Standard TTL 504

9.13 Logic Functions in TTL 504

9.13.1 Multi-Emitter Input Transistors 505

9.13.2 TTL NAND Gates 505

9.13.3 Input Clamping Diodes 506

9.14 Schottky-Clamped TTL 506

9.15 Comparison of the Power-Delay Products of ECL and TTL 508

9.16 BiCMOS Logic 508

9.16.1 BiCMOS Buffers 509

9.16.2 BiNMOS Inverters 511

9.16.3 BiCMOS Logic Gates 513

Summary 513

Key Terms 515

References 515

Additional Reading 515

Problems 516

PART THREE ANALOG ELECTRONICS 527

CHAPTER10 ANALOG SYSTEMS AND IDEAL OPERATIONAL AMPLIFIERS 529

10.1 An Example of an Analog Electronic System 530

10.2 Amplifiication 531

10.2.1 Voltage Gain 532

10.2.2 Current Gain 533

10.2.3 Power Gain 533

10.2.4 The Decibel Scale 534

10.3 Two-Port Models for Amplifiiers 537

10.3.1 The g-parameters 537

10.4 Mismatched Source and Load Resistances 541

10.5 Introduction to Operational Amplifiers 544

10.5.1 The Differential Amplifier 544

10.5.2 Differential Amplifier Voltage Transfer Characteristic 545

10.5.3 Voltage Gain 545

10.6 Distortion in Amplifiers 548

10.7 Differential Amplifier Model 549

10.8 Ideal Differential and Operational Amplifiers 551

10.8.1 Assumptions for Ideal Operational Amplifier Analysis 551

10.9 Analysis of Circuits Containing Ideal Operational Amplifiiers 552

10.9.1 The Inverting Amplifiier 553

10.9.2 The Transresistance Amplifiier—A Current-to-Voltage Converter 556

10.9.3 The Noninverting Amplifier 558

10.9.4 The Unity-Gain Buffer,or Voltage Follower 561

10.9.5 The Summing Amplifiier 563

10.9.6 The Difference Amplifier 565

10.10 Frequency-Dependent Feedback 568

10.10.1 Bode Plots 568

10.10.2 The Low-Pass Amplifier 568

10.10.3 The High-Pass Amplifier 572

10.10.4 Band-Pass Amplifiers 575

10.10.5 An Active Low-Pass Filter 578

10.10.6 An Active High-Pass Filter 581

10.10.7 The Integrator 582

10.10.8 The Differentiator 586

Summary 586

Key Terms 588

References 588

Additional Reading 589

Problems 589

CHAPTER 11 NONIDEAL OPERATIONAL AMPLIFIERS AND FEEDBACK AMPLIFIER STABILITY 600

11.1 Classic Feedback Systems 601

11.1.1 Closed-Loop Gain Analysis 602

11.1.2 Gain Error 602

11.2 Analysis of Circuits Containing Nonideal Operational Amplifiers 603

11.2.1 Finite Open-Loop Gain 603

11.2.2 Nonzero Output Resistance 606

11.2.3 Finite Input Resistance 610

11.2.4 Summary of Nonideal Inverting and Noninverting Amplifiiers 614

11.3 Series and Shunt Feedback Circuits 615

11.3.1 Feedback Amplifier Categories 615

11.3.2 Voltage Amplifiers—Series-Shunt Feedback 616

11.3.3 Transimpedance Amplifiers—Shunt-Shunt Feedback 616

11.3.4 Current Amplifiiers—Shunt-Series Feedback 616

11.3.5 Transconductance Amplifiiers—Series-Series Feedback 616

11.4 Unifiied Approach to Feedback Amplifier Gain Calculation 616

11.4.1 Closed-Loop Gain Analysis 617

11.4.2 Resistance Calculation Using Blackman’S Theorem 617

11.5 Series-Shunt Feedback-Voltage Amplifiiers 617

11.5.1 Closed-Loop Gain Calculation 618

11.5.2 Input Resistance Calculation 618

11.5.3 Output Resistance Calculation 619

11.5.4 Series-Shunt Feedback Amplifiier Summary 620

11.6 Shunt-Shunt Feed back—Transresistance Amplifiers 624

11.6.1 Closed-Loop Gain Calculation 625

11.6.2 Input Resistance Calculation 625

11.6.3 Output Resistance Calculation 625

11.6.4 Shunt-Shunt Feedback Amplifier Summary 626

11.7 Series-Series Feedback —Transconductance Amplifiiers 629

11.7.1 Closed-Loop Gain Calculation 630

11.7.2 Input Resistance Calculation 630

11.7.3 Output Resistance Calculation 631

11.7.4 Series-Series Feedback Amplifiier Summary 631

11.8 Shunt-Series Feedback—Current Amplifiers 633

11.8.1 Closed-Loop Gain Calculation 634

11.8.2 Input Resistance Calculation 635

11.8.3 Output Resistance Calculation 635

11.8.4 Series-Series Feedback Amplifiier Summary 635

11.9 Finding the Loop Gain Using Successive Voltage and Current Injection 638

11.9.1 Simplifications 641

11.10 Distortion Reduction Through the Use of Feedback 641

11.11 DC Error Sources and Output Range Limitations 642

11.11.1 Input-Offset Voltage 643

11.11.2 Offset-Voltage Adjustment 644

11.11.3 Input-Bias and Offset Currents 645

11.11.4 Output Voltage and Current Limits 647

11.12 Common-Mode Rejection and Input Resistance 650

11.12.1 Finite Common-Mode Rejection Ratio 650

11.12.2 Why Is CMRR Important? 651

11.12.3 Voltage-Follower Gain Error Due to CMRR 654

11.12.4 Common-Mode Input Resistance 656

11.12.5 An Alternate Interpretation of CMRR 657

11.12.6 Power Supply Rejection Ratio 657

11.13 Frequency Response and Bandwidth of Operational Amplifiers 659

11.13.1 Frequency Response of the NoninvertingAmplifiier 661

11.13.2 Inverting Amplifiier Frequency Response 664

11.13.3 Using Feedback to Control Frequency Response 666

11.13.4 Large-Signal Limitations—Slew Rate and Full-Power Bandwidth 668

11.13.5 Macro Model for Operational Amplifier Frequency Response 669

11.13.6 Complete Op Amp Macro Models in SPICE 670

11.13.7 Examples of Commercial General-Purpose Operational Amplifiiers 670

11.14 Stability of Feedback Amplifiers 671

11.14.1 The Nyquist Plot 671

11.14.2 First-Order Systems 672

11.14.3 Second-Order Systems and Phase Margin 673

11.14.4 Step Response and Phase Margin 674

11.14.5 Third-Order Systems and Gain Margin 677

11.14.6 Determining Stability from the Bode Plot 678

Summary 682

Key Terms 684

References 684

Problems 685

CHAPTER 12 OPERATIONAL AMPLIFIER APPLICATIONS 697

12.1 Cascaded Amplifiiers 698

12.1.1 Two-Port Representations 698

12.1.2 Amplifiier Terminology Review 700

12.1.3 Frequency Response of Cascaded Amplifiiers 703

12.2 The Instrumentation Amplifiier 711

12.3 Active Filters 714

12.3.1 Low-Pass Filter 714

12.3.2 A High-Pass Filter with Gain 718

12.3.3 Band-Pass Filter 720

12.3.4 The Tow-Thomas Biquad 722

12.3.5 Sensitivity 726

12.3.6 Magnitude and Frequency Scaling 727

12.4 Switched-Capacitor Circuits 728

12.4.1 A Switched-Capacitor Integrator 728

12.4.2 Noninverting SC Integrator 730

12.4.3 Switched-Capacitor Filters 732

12.5 Digital-to-Analog Conversion 733

12.5.1 D/A Converter Fundamentals 733

12.5.2 D/A Converter Errors 734

12.5.3 Digital-to-Analog Converter Circuits 737

12.6 Analog-to-Digital Conversion 740

12.6.1 A/D Converter Fundamentals 741

12.6.2 Analog-to-Digital Converter Errors 742

12.6.3 Basic A/D Conversion Techniques 743

12.7 Oscillators 754

12.7.1 The Barkhausen Criteria for Oscillation 754

12.7.2 Oscillators Employing Frequency-Selective RC Networks 755

12.8 Nonlinear Circuit Applications 760

12.8.1 A Precision Half-Wave Rectifiier 760

12.8.2 Nonsaturating Precision-Rectifiier Circuit 761

12.9 Circuits Using Positive Feedback 763

12.9.1 The Comparator and Schmitt Trigger 763

12.9.2 The Astable Multivibrator 765

12.9.3 The Monostable Multivibrator or One Shot 766

Summary 770

Key Terms 772

Additional Reading 773

Problems 773

CHAPTER 13 SMALL-SIGNAL MODELING AND LINEAR AMPLIFICATION 786

13.1 The Transistor as an Amplifier 787

13.1.1 The BJT Amplifier 788

13.1.2 The MOSFET Amplifier 789

13.2 Coupling and Bypass Capacitors 790

13.3 Circuit Analysis Using dc and ac Equivalent Circuits 792

13.3.1 Menu for dc and ac Analysis 792

13.4 Introduction to Small-Signal Modeling 796

13.4.1 Graphical Interpretation of the Small-Signal Behavior of the Diode 796

13.4.2 Small-Signal Modeling of the Diode 797

13.5 Small-Signal Models for Bipolar Junction Transistors 799

13.5.1 The Hybrid-Pi Model 801

13.5.2 Graphical Interpretation of the Transconductance 802

13.5.3 Small-Signal Current Gain 802

13.5.4 The Intrinsic Voltage Gain of the BJT 803

13.5.5 Equivalent Forms of the Small-Signal Model 804

13.5.6 Simplifiied Hybrid Pi Model 805

13.5.7 Definition of a Small Signal for the Bipolar Transistor 805

13.5.8 Small-Signal Model for the pnp Transistor 807

13.5.9 ac Analysis Versus Transient Analysis in SPICE 807

13.6 The Common-Emitter (C-E) Amplifier 808

13.6.1 Terminal Voltage Gain 809

13.6.2 Input Resistance 809

13.6.3 Signal Source Voltage Gain 810

13.7 Important Limits and Model Simplifications 810

13.7.1 A Design Guide for the Common-Emitter Amplifier 810

13.7.2 Upper Bound on the Common-Emitter Gain 812

13.7.3 Small-Signal Limit for the Common-emitter Amplifier 812

13.8 Small-Signal Models for Field-Effect Transistors 815

13.8.1 Small-Signal Model for the MOSFET 815

13.8.2 Intrinsic Voltage Gain of the MOSFET 817

13.8.3 Defiinition of Small-Signal Operation for the MOSFET 817

13.8.4 Body Effect in the Four-Terminal MOSFET 818

13.8.5 Small-Signal Model for the PMOS Transistor 819

13.8.6 Small-Signal Model for the Junction Field-Effect Transistor 820

13.9 Summary and Comparison of the Small-Signal Models of the BJT and FET 821

13.10 The Common-Source Amplifier 824

13.10.1 Common-Source Terminal Voltage Gain 825

13.10.2 Signal Source Voltage Gain for the Common-Source Amplifier 825

13.10.3 A Design Guide for the Common-Source Amplifier 826

13.10.4 Small-Signal Limit for the Common-Source Amplifier 827

13.10.5 Input Resistances of the Common-Emitter and Common-Source Amplifiers 829

13.10.6 Common-Emitter and Common-Source Output Resistances 832

13.10.7 Comparison of the Three Amplifier Resistances 838

13.11 Common-Emitter and Common-Source Amplifier Summary 838

13.11.1 Guidelines for Neglecting the Transistor Output Resistance 839

13.12 Amplifier Power and Signal Range 839

13.12.1 Power Dissipation 839

13.12.2 Signal Range 840

Summary 843

Key Terms 844

Problems 845

CHAPTER 14 SINGLE-TRANSISTOR AMPLIFIERS 857

14.1 Amplifier Classification 858

14.1.1 Signal Injection and Extraction—The BJT 858

14.1.2 Signal Injection and Extraction—The FET 859

14.1.3 Common-Emitter (C-E) and Common-Source (C-S) Amplifiers 860

14.1.4 Common-Collector (C-C) and Common-Drain (C-D) Topologies 861

14.1.5 Common-Base (C-B) and Common-Gate (C-G) Amplifiers 863

14.1.6 Small-Signal Model Review 864

14.2 Inverting Amplifiers—Common-Emitter and Common-Source Circuits 864

14.2.1 The Common-Emitter (C-E) Amplifier 864

14.2.2 Common-Emitter Example Comparison 877

14.2.3 The Common-Source Amplifier 877

14.2.4 Small-Signal Limit for the Common-Source Amplifiier 880

14.2.5 Common-Emitter and Common-Source Amplifier Characteristics 884

14.2.6 C-E/C-S Amplifier Summary 885

14.2.7 Equivalent Transistor Representation of the Generalized C-E/C-S Transistor 885

14.3 Follower Circuits—Common-Collector and Common-Drain Amplifiers 886

14.3.1 Terminal Voltage Gain 886

14.3.2 Input Resistance 887

14.3.3 Signal Source Voltage Gain 888

14.3.4 Follower Signal Range 888

14.3.5 Follower Output Resistance 889

14.3.6 Current Gain 890

14.3.7 C-C/C-D Amplifier Summary 890

14.4 NoninvertingAmplifiers—Common-Base and Common-Gate Circuits 894

14.4.1 Terminal Voltage Gain and Input Resistance 895

14.4.2 Signal Source Voltage Gain 896

14.4.3 Input Signal Range 897

14.4.4 Resistance at the Collector and Drain Terminals 897

14.4.5 Current Gain 898

14.4.6 Overall Input and Output Resistances for the Noninverting Amplifiers 899

14.4.7 C-B/C-G Amplifier Summary 902

14.5 Amplifier Prototype Review and Comparison 903

14.5.1 The BJT Amplifiiers 903

14.5.2 The FET Amplifiiers 905

14.6 Common-Source Amplifiers Using MOS Inverters 907

14.6.1 Voltage Gain Estimate 908

14.6.2 Detailed Analysis 909

14.6.3 Alternative Loads 910

14.6.4 Input and Output Resistances 911

14.7 Coupling and Bypass Capacitor Design 914

14.7.1 Common-Emitter and Common-Source Amplifiers 914

14.7.2 Common-Collector and Common-Drain Amplifiers 919

14.7.3 Common-Base and Common-Gate Amplifiers 921

14.7.4 Setting Lower Cutoff Frequency f L 924

14.8 Amplifiier Design Examples 925

14.8.1 Monte Carlo Evaluation of the Common-Base Amplifier Design 934

14.9 Multistage ac-Coupled Amplifiers 939

14.9.1 A Three-Stage ac-Coupled Amplifiier 939

14.9.2 Voltage Gain 941

14.9.3 Input Resistance 943

14.9.4 Signal Source Voltage Gain 943

14.9.5 Output Resistance 943

14.9.6 Current and Power Gain 944

14.9.7 Input Signal Range 945

14.9.8 Estimating the Lower Cutoff Frequency of the Multistage Amplifier 948

Summary 950

Key Terms 951

Additional Reading 952

Problems 952

CHAPTER 15 DIFFERENTIAL AMPLIFIERS AND OPERATIONAL AMPLIFIER DESIGN 968

15.1 Differential Amplifiers 969

15.1.1 Bipolar and MOS Differential Amplifiiers 969

15.1.2 dc Analysis of the Bipolar Differential Amplifiier 970

15.1.3 Transfer Characteristic for the Bipolar Differential Amplifier 972

15.1.4 ac Analysis of the Bipolar Differential Amplifier 973

15.1.5 Differential-Mode Gain and Input and Output Resistances 974

15.1.6 Common-Mode Gain and Input Resistance 976

15.1.7 Common-Mode Rejection Ratio (CMRR) 978

15.1.8 Analysis Using Differential- and Common-Mode Half-Circuits 979

15.1.9 Biasing with Electronic Current Sources 982

15.1.10 Modeling the Electronic Current Source in SPICE 983

15.1.11 dc Analysis of the MOSFET Differential Amplifier 983

15.1.12 Differential-Mode Input Signals 985

15.1.13 Small-Signal Transfer Characteristic for the MOS Differential Amplifiier 986

15.1.14 Common-Mode Input Signals 986

15.1.15 Two-Port Model for Differential Pairs 987

15.2 Evolution to Basic Operational Amplifiiers 991

15.2.1 A Two-Stage Prototype for an Operational Amplifier 992

15.2.2 Improving the Op Amp Voltage Gain 997

15.2.3 Output Resistance Reduction 998

15.2.4 A CMOS Operational Amplifiier Prototype 1002

15.2.5 BiCMOS Amplifiers 1004

15.2.6 All Transistor Implementations 1004

15.3 Output Stages 1006

15.3.1 The Source Follower—A Class-A Output Stage 1006

15.3.2 Efficiency of Class-A Amplifiers 1007

15.3.3 Class-B Push-Pull Output Stage 1008

15.3.4 Class-AB Amplifiers 1010

15.3.5 Class-AB Output Stages for Operational Amplifiers 1011

15.3.6 Short-Circuit Protection 1011

15.3.7 Transformer Coupling 1013

15.4 Electronic Current Sources 1016

15.4.1 Single-Transistor Current Sources 1017

15.4.2 Figure of Merit for Current Sources 1017

15.4.3 Higher Output Resistance Sources 1018

15.4.4 Current Source Design Examples 1018

Summary 1027

Key Terms 1028

References 1029

Additional Reading 1029

Problems 1029

CHAPTER 16 ANALOG INTEGRATED CIRCUIT DESIGN TECHNIQUES 1046

16.1 Circuit Element Matching 1047

16.2 Current Mirrors 1049

16.2.1 dc Analysis of the MOS Transistor Current Mirror 1049

16.2.2 Changing the MOS Mirror Ratio 1051

16.2.3 dc Analysis of the Bipolar Transistor Current Mirror 1052

16.2.4 Altering the BJT Current Mirror Ratio 1054

16.2.5 Multiple Current Sources 1055

16.2.6 Buffered Current Mirror 1056

16.2.7 Output Resistance of the Current Mirrors 1057

16.2.8 Two-Port Model for the Current Mirror 1058

16.2.9 The Widlar Current Source 1060

16.2.10 The MOS Version of the Widlar Source 1063

16.3 High-Output-Resistance Current Mirrors 1063

16.3.1 The Wilson Current Sources 1064

16.3.2 Output Resistance of the Wilson Source 1065

16.3.3 Cascode Current Sources 1066

16.3.4 Output Resistance of the Cascode Sources 1067

16.3.5 Regulated Cascode Current Source 1068

16.3.6 Current Mirror Summary 1069

16.4 Reference Current Generation 1072

16.5 Supply-Independent Biasing 1073

16.5.1 A VBE-Based Reference 1073

16.5.2 The Widlar Source 1073

16.5.3 Power-Supply-Independent Bias Cell 1074

16.5.4 A Supply-Independent MOS Reference Cell 1075

16.6 The Bandgap Reference 1077

16.7 The Current Mirror As an Active Load 1081

16.7.1 CMOS Differential Amplifier with Active Load 1081

16.7.2 Bipolar Differential Amplifier with Active Load 1088

16.8 Active Loads in Operational Amplifiers 1092

16.8.1 CMOS Op Amp Voltage Gain 1092

16.8.2 dc Design Considerations 1093

16.8.3 Bipolar Operational Amplifiers 1095

16.8.4 Input Stage Breakdown 1096

16.9 The μA741 Operational Amplifier 1097

16.9.1 Overall Circuit Operation 1097

16.9.2 Bias Circuitry 1098

16.9.3 dc Analysis of the 741 Input Stage 1099

16.9.4 ac Analysis of the 741 Input Stage 1102

16.9.5 Voltage Gain of the Complete Amplifier 1103

16.9.6 The 741 Output Stage 1107

16.9.7 Output Resistance 1109

16.9.8 Short Circuit Protection 1109

16.9.9 Summary of the μA741 Operational Amplifiier Characteristics 1109

16.10 The Gilbert Analog Multiplier 1110

Summary 1112

Key Terms 1113

References 1114

Problems 1114

CHAPTER 17 AMPLIFIER FREQUENCY RESPONSE 1128

17.1 Amplifier Frequency Response 1129

17.1.1 Low-Frequency Response 1130

17.1.2 Estimating ωL in the Absence of a Dominant Pole 1130

17.1.3 High-Frequency Response 1133

17.1.4 Estimating ωH in the Absence of a Dominant Pole 1133

17.2 Direct Determination of the Low-Frequency Poles and Zeros—The Common-Source Amplifiier 1134

17.3 Estimation of ωL Using the Short-Circuit Time-Constant Method 1139

17.3.1 Estimate of ωL for the Common-Emitter Amplifier 1140

17.3.2 Estimate of ωL for the Common-Source Amplifier 1144

17.3.3 Estimate of ωL for the Common-Base Amplifier 1145

17.3.4 Estimate of ωL for the Common-Gate Amplifier 1146

17.3.5 Estimate of ωL for the Common-CollectorAmplifier 1147

17.3.6 Estimate of ωL for the Common-Drain Amplifier 1147

17.4 Transistor Models at High Frequencies 1148

17.4.1 Frequency-Dependent Hybrid-Pi Model for the Bipolar Transistor 1148

17.4.2 Modeling Cπ and Cμ in SPICE 1149

17.4.3 Unity-Gain Frequency fT 1149

17.4.4 High-Frequency Model for the FET 1152

17.4.5 Modeling CGs and CGD in SPICE 1153

17.4.6 Channel Length Dependence of fT 1153

17.4.7 Limitations of the High-Frequency Models 1155

17.5 Base Resistance in the Hybrid-Pi Model 1155

17.5.1 Effect of Base Resistance on Midband Amplifiers 1156

17.6 High-Frequency Common-Emitter and Common-Source Amplifier Analysis 1158

17.6.1 The Miller Effect 1159

17.6.2 Common-Emitter and Common-Source Amplifier High-Frequency Response 1160

17.6.3 Direct Analysis of the Common-Emitter Transfer Characteristic 1162

17.6.4 Poles of the Common-Emitter Amplifier 1163

17.6.5 Dominant Pole for the Common-Source Amplifier 1166

17.6.6 Estimation of ωH Using the Open-Circuit Time-Constant Method 1167

17.6.7 Common-Source Amplifiier with Source Degeneration Resistance 1170

17.6.8 Poles of the Common-Emitter with Emitter Degeneration Resistance 1172

17.7 Common-Base and Common-Gate Amplifier High-Frequency Response 1174

17.8 Common-Collector and Common-Drain Amplifier High-Frequency Response 1177

17.9 Single-Stage Amplifiier High-Frequency Response Summary 1179

17.9.1 Amplifier Gain-Bandwidth Limitations 1180

17.10 Frequency Response of Multistage Amplifiiers 1181

17.10.1 Differential Amplifier 1181

17.10.2 The Common-Collector/Common-Base Cascade 1182

17.10.3 High-Frequency Response of the Cascode Amplifier 1184

17.10.4 Cutoff Frequency for the Current Mirror 1185

17.10.5 Three-Stage Amplifier Example 1187

17.11 Introduction to Radio Frequency Circuits 1193

17.11.1 Radio Frequency Amplifiiers 1194

17.11.2 The Shunt-Peaked Amplifier 1194

17.11.3 Single-Tuned Amplifier 1197

17.11.4 Use of a Tapped Inductor—The Auto Transformer 1199

17.11.5 Multiple Tuned Circuits—Synchronous and Stagger Tuning 1201

17.11.6 Common-Source Amplifier with Inductive Degeneration 1202

17.12 Mixers and Balanced Modulators 1205

17.12.1 Introduction to Mixer Operation 1205

17.12.2 A Single-Balanced Mixer 1206

17.12.3 The Differential Pair as a Single-Balanced Mixer 1207

17.12.4 A Double-Balanced Mixer 1208

17.12.5 The Gilbert Multiplier as a Double-Balanced Mixer/Modulator 1210

Summary 1213

Key Terms 1215

Reference 1215

Problems 1215

CHAPTER18 TRANSISTOR FEEDBACK AMPLIFIERS AND OSCILLATORS 1228

18.1 Basic Feedback System Review 1229

18.1.1 Closed-Loop Gain 1229

18.1.2 Closed-Loop impedances 1230

18.1.3 Feedback Effects 1230

18.2 Feedback Amplifier Analysis at Midband 1232

18.3 Feedback Amplifier Circuit Examples 1234

18.3.1 Series-Shunt Feedback—Voltage Amplifiers 1234

18.3.2 Differential Input Series-Shunt Voltage Amplifier 1239

18.3.3 Shunt-Shunt Feedback —Transresistance Amplifiers 1242

18.3.4 Series-Series Feedback —Transconductance Amplifiers 1248

18.3.5 Shunt-Series Feedback—Current Amplifiers 1251

18.4 Review of Feedback Amplifier Stability 1254

18.4.1 Closed-Loop Response of the Uncompensated Amplifier 1254

18.4.2 Phase Margin 1256

18.4.3 Higher-Order Effects 1259

18.4.4 Response of the Compensated Amplifier 1260

18.4.5 Small-Signal Limitations 1262

18.5 Single-Pole Operational Amplifiier Compensation 1262

18.5.1 Three-Stage Op Amp Analysis 1263

18.5.2 Transmission Zeros in FET Op Amps 1265

18.5.3 Bipolar Amplifier Compensation 1266

18.5.4 Slew Rate of the Operational Amplifier 1266

18.5.5 Relationships Between Slew Rate and Gain-Bandwidth Product 1268

18.6 High-Frequency Oscillators 1277

18.6.1 The Colpitts Oscillator 1278

18.6.2 The Hartley Oscillator 1279

18.6.3 Amplitude Stabilization in LC Oscillators 1280

18.6.4 Negative Resistance in Oscillators 1280

18.6.5 Negative GM Oscillator 1281

18.6.6 Crystal Oscillators 1283

Summary 1287

Key Terms 1289

References 1289

Problems 1289

APPENDIXES 1300

A Standard Discrete Component Values 1300

B Solid-State Device Models and SPICE Simulation Parameters 1303

C Two-Port Review 1310

Index 1313

精品推荐