图书介绍

Nonlinear Systems Third Editionpdf电子书版本下载

Nonlinear Systems Third Edition
  • Hassan K. Khalil 著
  • 出版社: Prentice Hall
  • ISBN:0130673897
  • 出版时间:2002
  • 标注页数:750页
  • 文件大小:76MB
  • 文件页数:771页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

Nonlinear Systems Third EditionPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction 1

1.1 Nonlinear Models and Nonlinear Phenomena 1

1.2 Examples 5

1.2.1 Pendulum Equation 5

1.2.2 Tunnel-Diode Circuit 6

1.2.3 Mass-Spring System 8

1.2.4 Negative-Resistance Oscillator 11

1.2.5 Artificial Neural Network 14

1.2.6 Adaptive Control 16

1.2.7 Common Nonlinearities 18

1.3 Exercises 24

2 Second-Order Systems 35

2.1 Qualitative Behavior of Linear Systems 37

2.2 Multiple Equilibria 46

2.3 Qualitative Behavior Near Equilibrium Points 51

2.4 Limit Cycles 54

2.5 Numerical Construction of Phase Portraits 59

2.6 Existence of Periodic Orbits 61

2.7 Bifurcation 69

2.8 Exercises 76

3 Fundamental Properties 87

3.1 Existence and Uniqueness 88

3.2 Continuous Dependence on Initial Conditions and Parameters 95

3.3 Differentiability of Solutions and Sensitivity Equations 99

3.4 Comparison Principle 102

3.5 Exercises 105

4 Lyapunov Stability 111

4.1 Autonomous Systems 112

4.2 The Invariance Principle 126

4.3 Linear Systems and Linearization 133

4.4 Comparison Functions 144

4.5 Nonautonomous Systems 147

4.6 Linear Time-Varying Systems and Linearization 156

4.7 Converse Theorems 162

4.8 Boundedness and Ultimate Boundedness 168

4.9 Input-to-State Stability 174

4.10 Exercises 181

5 Input-Output Stability 195

5.1 L Stability 195

5.2 L Stability of State Models 201

5.3 L2 Gain 209

5.4 Feedback Systems:The Small-Gain Theorem 217

5.5 Exercises 222

6 Passivity 227

6.1 Memoryless Functions 228

6.2 State Models 233

6.3 Positive Real Transfer Functions 237

6.4 L2 and Lyapunov Stability 241

6.5 Feedback Systems:Passivity Theorems 245

6.6 Exercises 259

7 Frequency Domain Analysis of Feedback Systems 263

7.1 Absolute Stability 264

7.1.1 Circle Criterion 265

7.1.2 Popov Criterion 275

7.2 The Describing Function Method 280

7.3 Exercises 296

8 Advanced Stability Analysis 303

8.1 The Center Manifold Theorem 303

8.2 Region of Attraction 312

8.3 Invariance-like Theorems 322

8.4 Stability of Periodic Solutions 329

8.5 Exercises 334

9 Stability of Perturbed Systems 339

9.1 Vanishing Perturbation 340

9.2 Nonvanishing Perturbation 346

9.3 Comparison Method 350

9.4 Continuity of Solutions on the Infinite Interval 355

9.5 Interconnected Systems 358

9.6 Slowly Varying Systems 365

9.7 Exercises 372

10 Perturbation Theory and Averaging 381

10.1 The Perturbation Method 382

10.2 Perturbation on the Infinite Interval 393

10.3 Periodic Perturbation of Autonomous Systems 397

10.4 Averaging 402

10.5 Weakly Nonlinear Second-Order Oscillators 411

10.6 General Averaging 413

10.7 Exercises 419

11 Singular Perturbations 423

11.1 The Standard Singular Perturbation Model 424

11.2 Time-Scale Properties of the Standard Model 430

11.3 Singular Perturbation on the Infinite Interval 439

11.4 Slow and Fast Manifolds 443

11.5 Stability Analysis 449

11.6 Exercises 460

12 Feedback Control 469

12.1 Control Problems 469

12.2 Stabilization via Linearization 475

12.3 Integral Control 478

12.4 Integral Control via Linearization 481

12.5 Gain Scheduling 485

12.6 Exercises 499

13 Feedback Linearization 505

13.1 Motivation 505

13.2 Input-Output Linearization 509

13.3 Full-State Linearization 521

13.4 State Feedback Control 530

13.4.1 Stabilization 530

13.4.2 Tracking 540

13.5 Exercises 544

14 Nonlinear Design Tools 551

14.1 Sliding Mode Control 552

14.1.1 Motivating Example 552

14.1.2 Stabilization 563

14.1.3 Tracking 572

14.1.4 Regulation via Integral Control 575

14.2 Lyapunov Redesign 579

14.2.1 Stabilization 579

14.2.2 Nonlinear Damping 588

14.3 Backstepping 589

14.4 Passivity-Based Control 604

14.5 High-Gain Observers 610

14.5.1 Motivating Example 612

14.5.2 Stabilization 619

14.5.3 Regulation via Integral Control 623

14.6 Exercises 625

A Mathematical Review 647

B Contraction Mapping 653

C Proofs 657

C.1 Proof of Theorems 3.1 and 3.2 657

C.2 Proof of Lemma 3.4 659

C.3 Proof of Lemma 4.1 661

C.4 Proof of Lemma 4.3 662

C.5 Proof of Lemma 4.4 662

C.6 Proof of Lemma 4.5 663

C.7 Proof of Theorem 4.16 665

C.8 Proof of Theorem 4.17 669

C.9 Proof of Theorem 4.18 675

C.10 Proof of Theorem 5.4 676

C.11 Proof of Lemma 6.1 677

C.12 Proof of Lemma 6.2 680

C.13 Proof of Lemma 7.1 684

C.14 Proof of Theorem 7.4 688

C.15 Proof of Theorems 8.1 and 8.3 690

C.16 Proof of Lemma 8.1 699

C.17 Proof of Theorem 11.1 700

C.18 Proof of Theorem 11.2 706

C.19 Proof of Theorem 12.1 708

C.20 Proof of Theorem 12.2 709

C.21 Proof of Theorem 13.1 710

C.22 Proof of Theorem 13.2 712

C.23 Proof of Theorem 14.6 713

Note and References 719

Bibliography 724

Symbols 740

Index 742

精品推荐