图书介绍

LINEAR ALGEBRA AND ITS APPLICATIONS FOURTH EDITIONpdf电子书版本下载

LINEAR ALGEBRA AND ITS APPLICATIONS  FOURTH EDITION
  • GILBERT STRANG 著
  • 出版社: BROOKS;COLE CENGAGE LEARNING
  • ISBN:0030105676
  • 出版时间:2006
  • 标注页数:488页
  • 文件大小:80MB
  • 文件页数:498页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

LINEAR ALGEBRA AND ITS APPLICATIONS FOURTH EDITIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 MATRICES AND GAUSSIAN ELIMINATION 1

1.1 Introduction 1

1.2 The Geometry of Linear Equations 3

1.3 An Example of Gaussian Elimination 11

1.4 Matrix Notation and Matrix Multiplication 19

1.5 Triangular Factors and Row Exchanges 32

1.6 Inverses and Transposes 45

1.7 Special Matrices and Applications 58

Review Exercises: Chapter 1 65

Chapter 2 VECTOR SPACES 69

2.1 Vector Spaces and Subspaces 69

2.2 Solving Ax = 0 and Ax = b 77

2.3 Linear Independence, Basis, and Dimension 92

2.4 The Four Fundamental Subspaces 102

2.5 Graphs and Networks 114

2.6 Linear Transformations 125

Review Exercises: Chapter 2 137

Chapter 3 ORTHOGONALITY 141

3.1 Orthogonal Vectors and Subspaces 141

3.2 Cosines and Projections onto Lines 152

3.3 Projections and Least Squares 160

3.4 Orthogonal Bases and Gram-Schmidt 174

3.5 The Fast Fourier Transform 188

Review Exercises: Chapter 3 198

Chapter 4 DETERMINANTS 201

4.1 Introduction 201

4.2 Properties of the Determinant 203

4.3 Formulas for the Determinant 210

4.4 Applications of Determinants 220

Review Exercises: Chapter 4 230

Chapter 5 EIGENVALUES AND EIGENVECTORS 233

5.1 Introduction 233

5.2 Diagonalization of a Matrix 245

5.3 Difference Equations and Powers Ak 254

5.4 Differential Equations and eAt 266

5.5 Complex Matrices 280

5.6 Similarity Transformations 293

Review Exercises: Chapter 5 307

Chapter 6 POSITIVE DEFINITE MATRICES 311

6.1 Minima, Maxima, and Saddle Points 311

6.2 Tests for Positive Definiteness 318

6.3 Singular Value Decomposition 331

6.4 Minimum Principles 339

6.5 The Finite Element Method 346

Chapter 7 COMPUTATIONS WITH MATRICES 351

7.1 Introduction 351

7.2 Matrix Norm and Condition Number 352

7.3 Computation of Eigenvalues 359

7.4 Iterative Methods for Ax = b 367

Chapter 8 LINEAR PROGRAMMING AND GAME THEORY 377

8.1 Linear Inequalities 377

8.2 The Simplex Method 382

8.3 The Dual Problem 392

8.4 Network Models 401

8.5 Game Theory 408

Appendix A INTERSECTION, SUM, AND PRODUCT OF SPACES 415

Appendix B THE JORDAN FORM 422

Solutions to Selected Exercises 428

Matrix Factorizations 474

Glossary 476

MATLAB Teaching Codes 481

Index 482

Linear Algebra in a Nutshell 488

精品推荐