图书介绍

MARINE PROPELLERS AND PROPULSION SECOND EDITIONpdf电子书版本下载

MARINE PROPELLERS AND PROPULSION SECOND EDITION
  • J S CARLTON 著
  • 出版社: ELSEVIER
  • ISBN:0750681500
  • 出版时间:2007
  • 标注页数:533页
  • 文件大小:110MB
  • 文件页数:552页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

MARINE PROPELLERS AND PROPULSION SECOND EDITIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 The early development of the screw propeller 1

2 Propulsion systems 11

2.1 Fixed pitch propellers 13

2.2 Ducted propellers 15

2.3 Podded and azimuthing propulsors 17

2.4 Contra-rotating propellers 18

2.5 Overlapping propellers 19

2.6 Tandem propellers 19

2.7 Controllable pitch propellers 20

2.8 Waterjet propulsion 23

2.9 Cycloidal propellers 23

2.10 Paddle wheels 24

2.11 Magnetohydrodynamic propulsion 26

2.12 Superconducting motors for marine propulsion 28

3 Propeller geometry 31

3.1 Frames of reference 33

3.2 Propeller reference lines 33

3.3 Pitch 34

3.4 Rake and skew 37

3.5 Propeller outlines and area 39

3.6 Propeller drawing methods 42

3.7 Section geometry and definition 42

3.8 Blade thickness distribution and thickness fraction 47

3.9 Blade interference limits for controllable pitch propellers 48

3.10 Controllable pitch propeller off-design section geometry 48

3.11 Miscellaneous conventional propeller geometry terminology 50

4 The propeller environment 51

4.1 Density of water 53

4.2 Salinity 53

4.3 Water temperature 54

4.4 Viscosity 55

4.5 Vapour pressure 55

4.6 Dissolved gases in sea water 56

4.7 Surface tension 56

4.8 Weather 58

4.9 Silt and marine organisms 61

5 The wake field 63

5.1 General wake field characteristics 65

5.2 Wake field definition 65

5.3 The nominal wake field 68

5.4 Estimation of wake field parameters 69

5.5 Effective wake field 71

5.6 Wake field scaling 74

5.7 Wake quality assessment 77

5.8 Wake field measurement 79

6 Propeller performance characteristics 87

6.1 General open water characteristics 89

6.2 The effect of cavitation on open water characteristics 94

6.3 Propeller scale effects 95

6.4 Specific propeller open water characteristics 98

6.5 Standard series data 101

6.6 Multi-quadrant series data 118

6.7 Slipstream contraction and flow velocities in the wake 123

6.8 Behind-hull propeller characteristics 131

6.9 Propeller ventilation 132

7 Theoretical methods — basic concepts 137

7.1 Basic aerofoil section characteristics 140

7.2 Vortex filaments and sheets 142

7.3 Field point velocities 144

7.4 The Kutta condition 146

7.5 The starting vortex 146

7.6 Thin aerofoil theory 147

7.7 Pressure distribution calculations 151

7.8 Boundary layer growth over an aerofoil 155

7.9 The finite wing 159

7.10 Models of propeller action 162

7.11 Source and vortex panel methods 164

8 Theoretical methods — propeller theories 167

8.1 Momentum theory — Rankine (1865); R.E.Froude (1887) 169

8.2 Blade element theory —W.Froude (1878) 171

8.3 Propeller Theoretical development (1900—1930) 172

8.4 Burrill’s analysis procedure (1944) 174

8.5 Lerbs analysis method (1952) 177

8.6 Eckhardt and Morgan’s design method (1955) 182

8.7 Lifting surface correction factors — Morgan et aL. 186

8.8 Lifting surface models 189

8.9 Lifting-line — lifting-surface hybrid models 192

8.10 Vortex lattice methods 192

8.11 Boundary element methods 197

8.12 Methods for specialist propulsors 198

8.13 Computational fluid dynamics methods 200

9 Cavitation 205

9.1 The basic physics of cavitation 207

9.2 Types of cavitation experienced by propellers 212

9.3 Cavitation considerations in design 219

9.4 Cavitation inception 228

9.5 Cavitation-induced damage 233

9.6 Cavitation testing of propellers 235

9.7 Analysis of measured pressure data from a cavitating propeller 239

9.8 Propeller—rudder interaction 240

10 Propeller noise 247

10.1 Physics of underwater sound 249

10.2 Nature of propeller noise 253

10.3 Noise scaling relationships 256

10.4 Noise prediction and control 258

10.5 Transverse propulsion unit noise 259

10.6 Measurement of radiated noise 260

11 Propeller—ship interaction 263

11.1 Bearing forces 265

11.2 Hydrodynamic interaction 278

12 Ship resistance and propulsion 285

12.1 Froude’s analysis procedure 287

12.2 Components of calm water resistance 289

12.3 Methods of resistance evaluation 298

12.4 Propulsive coefficients 310

12.5 The influence of rough water 312

12.6 Restricted water effects 314

12.7 High-speed hull form resistance 314

12.8 Air resistance 316

13 Thrust augmentation devices 319

13.1 Devices before the propeller 321

13.2 Devices at the propeller 324

13.3 Devices behind the propeller 327

13.4 Combinations of systems 328

14 Transverse thrusters 331

14.1 Transverse thrusters 333

14.2 Steerable internal duct thrusters 340

15 Azimuthing and podded propulsors 343

15.1 Azimuthing thrusters 345

15.2 Podded propulsors 346

16 Waterjet propulsion 355

16.1 Basic principle of waterjet propulsion 357

16.2 Impeller types 359

16.3 Manoeuvring aspects of waterjets 360

16.4 Waterjet component design 361

17 Full-scale trials 367

17.1 Power absorption measurements 369

17.2 Bollard pull trials 375

17.3 Propeller-induced hull surface pressure measurements 377

17.4 Cavitation observations 377

18 Propeller materials 381

18.1 General properties of propeller materials 383

18.2 Specific properties of propeller materials 386

18.3 Mechanical properties 390

18.4 Test procedures 392

19 Propeller blade strength 395

19.1 Cantilever beam method 397

19.2 Numerical blade stress computational methods 402

19.3 Detailed strength design considerations 405

19.4 Propeller backing stresses 408

19.5 Blade root fillet design 408

19.6 Residual blade stresses 409

19.7 Allowable design stresses 410

19.8 Full-scale blade strain measurement 413

20 Propeller manufacture 417

20.1 Traditional manufacturing method 419

20.2 Changes to the traditional technique of manufacture 423

21 Propeller blade vibration 425

21.1 Flat-plate blade vibration in air 427

21.2 Vibration of propeller blades in air 428

21.3 The effect of immersion in water 430

21.4 Simple estimation methods 430

21.5 Finite element analysis 431

21.6 Propeller blade damping 432

21.7 Propeller singing 433

22 Propeller design 435

22.1 The design and analysis loop 437

22.2 Design constraints 438

22.3 The choice of propeller type 439

22.4 The propeller design basis 442

22.5 The use of standard series data in design 445

22.6 Design considerations 449

22.7 The design process 458

23 Operational problems 465

23.1 Performance related problems 467

23.2 Propeller integrity related problems 472

23.3 Impact or grounding 474

24 Service performance and analysis 477

24.1 Effects of weather 479

24.2 Hull roughness and fouling 479

24.3 Hull drag reduction 486

24.4 Propeller roughness and fouling 486

24.5 Generalized equations for the roughness-induced power penalties in ship operation 489

24.6 Monitoring of ship performance 493

25 Propeller tolerances and inspection 503

25.1 Propeller tolerances 505

25.2 Propeller inspection 506

26 Propeller maintenance and repair 511

26.1 Causes of propeller damage 513

26.2 Propeller repair 515

26.3 Welding and the extent of weld repairs 517

26.4 Stress relief 518

Bibliography 521

Index 525

精品推荐