图书介绍

An Introduction to Differentiable Manifolds and Riemannian Geometrypdf电子书版本下载

An Introduction to Differentiable Manifolds and Riemannian Geometry
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:424页
  • 文件大小:17MB
  • 文件页数:434页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

An Introduction to Differentiable Manifolds and Riemannian GeometryPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅳ. Vector Fields on a Manifold 106

1. The Tangent Space at a Point of a Manilold 106

2. Vector Fields 115

3. One-Parameter and Local One-Parameter Groups Acting on a Manifold 122

4. The Existence Theorem for Ordinary Differential Equations 130

5. Some Examples of One-Parameter Groups Acting on a Manifold 138

6. One-Parameter Subgroups of Lie Groups 1- 45

7. The Lie Algebra of Vector Fields on a Manifold 1- 49

8. Frobenius Theorem 156

9. Homogeneous Spaces 164

Notes 171

Appendix Partial Proof of Theorem 4.1 172

Ⅴ. Tensors and Tensor Fields on Manifolds 175

1. Tangent Covectors 175

Covectors on Manifolds 176

Covector Fields and Mappings 178

2. Bilinear Forms. The Riemannian Metric 181

3. Riemannian Manifolds as Metric Spaccs 185

4. Partitions of Unity 191

Some Applications of the Partition of Unity 193

5. Tensor Fields 197

Tensors on a Vector Space 197

Tensor Fields 199

Mappings and Covariant Tensors 200

The Symmetrizing and Alternating Transformations 201

6. Multiplication of Tensors 204

Multiplication of Tensors on a Vector Space 205

Multiplication of Tensor Fields 206

Exterior Multiplication of A 207

ernating Tensors 207

The Exterior Algebra on Manifolds 211

7. Orientation of Manifolds and the Volume Element 213

8. Exterior Differentiation 217

An Application to Frobenius' Theorem 221

Notes 225

Ⅵ. Integration on Manifolds 227

1. Integration in Rn. Domains of Integration 227

Basic Properties of the Riemann Integral 228

2. A Generalization to Manifolds 233

Integration on Riemannian Manifolds 237

3. Integration on Lie Groups 241

4. Manifolds with Boundary 248

5. Stokes 's Theorem for Manifolds with Boundary 256

6. Homotopy of Mappings. The Fundnmental Group 263

Homotopy of Paths and Loops. The Fundamental Group 265

7. Some Applications of Differential Forms. The de Rham Groups 271

The Homotopy Operator 274

Ⅳ. Vector Fields on a Manifold 106

1. The Tangent Space at a Point of a Manifold 106

2. Vector Fields 115

3. One-Parameter and Local One-Parameter Groups Acting on a Manifold 122

4. The Existence Theorem for Ordinar Differemial Equations 130

5. Some Examples of One-Parameter Groups Actmg on a Manifold 13

6. One-Parameter Subgroups of Lic Groups 145

7. The Lie Algebra of Vector Fields on a Mamfold 149

8. Frobenius' Theorem 156

9. Homogeneous Spaces 164

Notes 171

Appendix Partial Proof of Theorem 41 172

Ⅴ. Tensors and Tensor Fields on Manifolds 175

1. Tangent Covectors 175

Covectors on Manifolds 176

Covector Fields and Mappings 178

2. Bilinear Forms. The Riemannian Metrie 181

3. Riemannian Manifolds as Metric Spaces 185

4. Partitions of Unity 191

Some Applications of the Partition of Unity 193

5. Tensor Fields 197

Tensors on a Vector Space 197

Tensor Fields 199

Mappings and Covariant Tensors 200

The Symmetrizing and Alternating Transformations 201

6. Multiplication of Tensors 204

Multiplication of Tensors on a Vector Space 205

Multiplication of Tensor Fields 206

Exterior Multiplication of Alternating Tensors 207

The Exterior Algebra on Manifolds 211

7. Orientation of Manifolds and the Volume Element 213

8. Exterior Differentiation 217

An Application to Frobenius' Theorem 221

Notes 225

Ⅵ. Integration on Manifolds 227

1. Integration in Rn. Domains of Integration 227

Basic Properties of the Riemann Integral 228

2. A Generalization to Manifolds 233

Integration on Riemannian Manifolds 237

3. Integration on Lie Groups 241

4. Manifolds with Boundary 248

5. Stokes 's Theorem for Manifolds with Boundary 256

6. Homnotopy of Mappings. The Fundamental Group 263

Homootopy of Paths and Loops. The Fundamental Group 265

7. Some Applications of Differential Forms. The de Rham Groups 271

The Homotopy Operator 274

8. Some Further Applications of de R ham Groups 278

The de Rham Groups of Lie Groups 282

9. Covering Spaces and the Fundamental Group 286

Notes 292

Ⅶ. Differentiation on Riemannian Manifolds 294

1. Differentiation of Vector Fields along Curves in Rn 294

The Geometry of Space Curves 297

Curvature of Plane Curves 301

2. Differentiation of Vector Fields on Submanifolds of Rn 303

Formulas for Covariant Derivatives 308

▽ x Y and Differentiation of Vector Fields 310

3. Differentiation on Riemannian Manifolds 313

Constant Vector.Fields and Parallel Displacement 319

4. Addenda to the Theory of Differentiation on a Manifold 321

The Curvature Tensor 321

The Riemannian Connection and Exterior Differential Forms 324

5. Geodesic Curves on Riemannian Manifolds 326

6. The Tangent Bundle and Exponential Mapping. Normal Coordinates 331

7. Some Further Properties of Geodesics 338

8. Symmetric Riemannian Manifolds 347

9. Some Examples 353

Notes 360

Ⅷ. Curvature 362

1. The Geometry of Surfaces in E3 362

The Principal Curvatures at a Point of a Surface 366

2. The Gaussian and Mean Curvatures of a Surface 370

The Theorema Egregium of Gauss 373

3. Basic Properties of the Riemann Curvature Tensor 378

4. The Curvature Forms and the Equations of Structure 385

5. Differentiation of Covariant Tensor Fields 391

6. Manifolds of Constant Curvature 399

Spaces of Positive Curvature 402

Spaces of Zero Curvature 404

Spaces of Constant Negative Curvature 405

Notes 410

REFERENCES 413

INDEX 417

精品推荐