图书介绍

Complex Analysispdf电子书版本下载

Complex Analysis
  • 出版社:
  • ISBN:
  • 出版时间:1953
  • 标注页数:247页
  • 文件大小:35MB
  • 文件页数:255页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

Complex AnalysisPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ COMPLEX NUMBERS 1

1.The algebra of complex numbers 1

1.1.Arithmetic operations 1

1.2.Square roots 2

1.3.Justification 4

1.4.Conjugation.Absolute value 6

1.5.Inequalities 8

2.The geometric representation of complex numbers 10

2.1.Geometric addition and multiplication 11

2.2.The binomial equation 13

2.3.Definition of the argument 14

2.4.Straight lines,half planes,and angles 18

2.5.The spherical representation 20

3.Linear transformations 22

3.1.The linear group 23

3.2.The cross ratio 25

3.3.Symmetry 26

3.4.Tangents,orientation,and angles 29

3.5.Families of circles 31

CHAPTER Ⅱ COMPLEX FUNCTIONS 36

1.Elementary functions 36

1.1.Limits and continuity 36

1.2.Analytic functions 38

1.3.Rational functions 42

1.4.The exponential function 46

1.5.The trigonometric functions 49

2.Topological concepts 51

2.1.Point sets 51

2.2.Connected sets 56

2.3.Compact sets 59

2.4.Continuous functions and mappings 61

2.5.Arcs and closed curves 64

3.Analytic functions in a region 66

3.1.Definition and simple consequences 66

3.2.Conformal mapping 69

4.Elementary conformal mappings 72

4.1.The use of level curves 72

4.2.A survey of elementary mappings 75

4.3.Elementary Riemann surfaces 79

CHAPTER Ⅲ COMPLEX INTEGRATION 82

1.Fundamental theorems 82

1.1.Line integrals 82

1.2.Cauchy's theorem for a rectangle 88

1.3.Cauchy's theorem in a circular disk 91

2.Cauchy's integral formula 92

2.1.The index of a point with respect to a closed curve 92

2.2.The integral formula 95

2.3.Higher derivatives 96

3.Local properties of analytic functions 99

3.1.Removable singularities.Taylor's theorem 99

3.2.Zeros and poles 102

3.3.The local mapping 105

3.4.The maximum principle 108

4.The general form of Cauchy's theorem 111

4.1.Chains and cycles 111

4.2.Simple connectivity 112

4.3.Exact differentials in simply connected regions 114

4.4.Multiply connected regions 116

5.The calculus of residues 119

5.1.The residue theorem 120

5.2.The argument principle 123

5.3.Evaluation of definite integrals 125

CHAPTER Ⅳ INFINITE SEQUENCES 132

1.Convergent sequences 132

1.1.Fundamental sequences 132

1.2.Subsequences 134

1.3.Uniform convergence 135

1.4.Limits of analytic functions 137

2.Power series 140

2.1.The circle of convergence 140

2.2.The Taylor series 141

2.3.The Laurent series 147

3.Partial fractions and factorization 149

3.1.Partial fractions 149

3.2.Infinite products 153

3.3.Canonical products 155

3.4.The gamma function 160

3.5.Stirling's formula 162

4.Normal families 168

4.1.Conditions of normality 168

4.2.The Riemann mapping theorem 172

CHAPTER Ⅴ THE DIRICHLET PROBLEM 175

1.Harmonic functions 175

1.1.Definition and basic properties 175

1.2.The mean-value property 178

1.3.Poisson's formula 179

1.4.Harnack's principle 183

1.5.Jensen's formula 184

1.6.The symmetry principle 189

2.Subharmonic functions 193

2.1.Definition and simple properties 194

2.2.Solution of Dirichlet's problem 196

3.Canonical mappings of multiply connected regions 199

3.1.Harmonic measures 200

3.2.Green's function 205

3.3.Parallel slit regions 206

CHAPTER Ⅵ MULTIPLE-VALUED FUNCTIONS 209

1.Analytic continuation 209

1.1.General analytic functions 209

1.2.The Riemann surface of a function 211

1.3.Analytic continuation along arcs 212

1.4.Homotopic curves 215

1.5.The monodromy theorem 218

1.6.Branch points 220

2.Algebraic functions 223

2.1.The resultant of two polynomials 223

2.2.Definition and properties of algebraic functions 224

2.3.Behavior at the critical points 226

3.Lineat differential equations 229

3.1.Ordinary points 230

3.2.Regular singular points 232

3.3.Solutions at infinity 234

3.4.The hypergeometric differential equation 235

3.5.Riemann's point of view 239

INDEX 243

精品推荐