图书介绍

高等几何pdf电子书版本下载

高等几何
  • 周建伟编著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:7040118785
  • 出版时间:2003
  • 标注页数:301页
  • 文件大小:8MB
  • 文件页数:313页
  • 主题词:高等几何-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

高等几何PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 射影平面 1

1.1拓广欧氏平面 1

1.1.1中心射影 1

1.1.2拓广欧氏平面 5

1.1.3齐次坐标 10

习题1.1 15

1.2射影平面 16

1.2.1射影平面的定义 16

1.2.2点与直线的结合关系 18

1.2.3射影平面的模型 21

习题1.2 23

1.3射影坐标 24

1.3.1一维射影坐标 24

1.3.2一维射影坐标变换 27

1.3.3二维射影坐标 30

习题1.3 37

1.4Desargues定理与对偶原理 38

1.4.1Desargues定理 38

1.4.2平面射影几何的对偶原理 41

习题1.4 46

1.5交比 49

1.5.1交比的定义与性质 49

1.5.2交比与一维射影坐标 53

1.5.3调和点列 55

1.5.4欧氏平面上交比的计算与运用 57

习题1.5 63

第二章 射影映射 66

2.1一维射影映射 66

2.1.1变换群 66

2.1.2透视 68

2.1.3一维射影映射 70

2.1.4一维射影映射的坐标表示 78

习题2.1 81

2.2一维射影变换 82

2.2.1直线上的射影变换 82

2.2.2对合 84

习题2.2 88

2.3直射 89

2.3.1直射映射 89

2.3.2直射变换 93

2.3.3调和同调变换 97

2.3.4直射与坐标变换的关系 101

习题2.3 104

2.4欧氏平面上的仿射变换 105

习题2.4 113

第三章 二次曲线的射影理论 116

3.1二次曲线的射影定义 116

3.1.1二次曲线 116

3.1.2二次曲线的切线 121

3.1.3二次曲线的射影定义 125

习题3.1 130

3.2配极 131

3.2.1极点与极线 131

3.2.2配极 136

3.2.3对射 141

习题3.2 145

3.3Pascal定理与Brianchon定理 146

习题3.3 155

3.4射影二次曲线的分类 157

3.4.1射影二次曲线的分类 157

3.4.2二次曲线束 159

习题3.4 164

第四章 仿射几何与欧氏几何 165

4.1仿射几何 165

4.1.1仿射平面 165

4.1.2仿射变换 172

习题4.1 174

4.2二次曲线的仿射理论 175

4.2.1仿射二次曲线 175

4.2.2仿射二次曲线的中心,直径与渐近线 178

习题4.2 185

4.3欧氏几何 187

4.3.1虚点、虚直线 187

4.3.2欧氏变换与欧氏几何 189

4.3.3欧氏二次曲线 195

习题4.3 200

4.4二次曲线的对称轴,焦点与准线 203

4.4.1二次曲线的对称轴 203

4.4.2焦点与准线 207

习题4.4 211

4.5欧氏,仿射,射影三种几何的比较 213

第五章 平面双曲几何 223

5.1双曲平面 223

5.1.1几何原本与非欧几何的发现 223

5.1.2双曲平面的Klein模型 230

5.1.3双曲度量 232

习题5.1 238

5.2双曲运动 239

习题5.2 245

5.3双曲三角学 246

5.3.1双曲三角学 246

5.3.2直线与直线的相关位置 250

5.3.3罗氏函数 255

习题5.3 256

5.4双曲弧长与面积 258

5.4.1双曲平面上的几种曲线 258

5.4.2双曲弧长 259

5.4.3双曲面积 262

习题5.4 266

5.5双曲平面的其他模型 267

5.5.1Poincaré模型 267

5.5.2双曲上半平面 271

第六章 平面椭圆几何 274

6.1球面几何与球面三角 274

6.1.1球面的特征性质 274

6.1.2球面三角公式 277

6.1.3球面上距离的坐标表示 278

习题6.1 279

6.2平面椭圆几何 280

6.2.1椭圆度量与椭圆几何 280

6.2.2椭圆二次曲线 283

6.2.3球面几何与椭圆几何的关系 287

6.2.4椭圆三角学 289

习题6.2 292

6.3变换群与几何学 293

参考文献 297

名词与人名索引 298

精品推荐