图书介绍

凸优化pdf电子书版本下载

凸优化
  • (美)鲍迪(BoydS.)著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7510061356
  • 出版时间:2013
  • 标注页数:716页
  • 文件大小:79MB
  • 文件页数:729页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

凸优化PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction 1

1.1 Mathematical optimization 1

1.2 Least-squares and linear programming 4

1.3 Convex optimization 7

1.4 Nonlinear optimization 9

1.5 Outline 11

1.6 Notation 14

Bibliography 16

Ⅰ Theory 19

2 Convex sets 21

2.1 Affine and convex sets 21

2.2 Some important examples 27

2.3 Operations that preserve convexity 35

2.4 Generalized inequalities 43

2.5 Separating and supporting hyperplanes 46

2.6 Dual cones and generalized inequalities 51

Bibliography 59

Exercises 60

3 Convex functions 67

3.1 Basic properties and examples 67

3.2 Operations that preserve convexity 79

3.3 The conjugate function 90

3.4 Quasiconvex functions 95

3.5 Log-concave and log-convex functions 104

3.6 Convexity with respect to generalized inequalities 108

Bibliography 112

Exercises 113

4 Convex optimization problems 127

4.1 Optimization problems 127

4.2 Convex optimization 136

4.3 Linear optimization problems 146

4.4 Quadratic optimization problems 152

4.5 Geometric programming 160

4.6 Generalized inequality constraints 167

4.7 Vector optimization 174

Bibliography 188

Exercises 189

5 Duality 215

5.1 The Lagrange dual function 215

5.2 The Lagrange dual problem 223

5.3 Geometric interpretation 232

5.4 Saddle-point interpretation 237

5.5 Optimality conditions 241

5.6 Perturbation and sensitivity analysis 249

5.7 Examples 253

5.8 Theorems of alternatives 258

5.9 Generalized inequalities 264

Bibliography 272

Exercises 273

Ⅱ Applications 289

6 Approximation and fitting 291

6.1 Norm approximation 291

6.2 Least-norm problems 302

6.3 Regularized approximation 305

6.4 Robust approximation 318

6.5 Function fitting and interpolation 324

Bibliography 343

Exercises 344

7 Statistical estimation 351

7.1 Parametric distribution estimation 351

7.2 Nonparametric distribution estimation 359

7.3 Optimal detector design and hypothesis testing 364

7.4 Chebyshev and Chernoff bounds 374

7.5 Experiment design 384

Bibliography 392

Exercises 393

8 Geometric problems 397

8.1 Projection on a set 397

8.2 Distance between sets 402

8.3 Euclidean distance and angle problems 405

8.4 Extremal volume ellipsoids 410

8.5 Centering 416

8.6 Classification 422

8.7 Placement and location 432

8.8 Floor planning 438

Bibliography 446

Exercises 447

Ⅲ Algorithms 455

9 Unconstrained minimization 457

9.1 Unconstrained minimization problems 457

9.2 Descent methods 463

9.3 Gradient descent method 466

9.4 Steepest descent method 475

9.5 Newton's method 484

9.6 Self-concordance 496

9.7 Implementation 508

Bibliography 513

Exercises 514

10 Equality constrained minimization 521

10.1 Equality constrained minimization problems 521

10.2 Newton's method with equality constraints 525

10.3 Infeasible start Newton method 531

10.4 Implementation 542

Bibliography 556

Exercises 557

11 Interior-point methods 561

11.1 Inequality constrained minimization problems 561

11.2 Logarithmic barrier function and central path 562

11.3 The barrier method 568

11.4 Feasibility and phase I methods 579

11.5 Complexity analysis via self-concordance 585

11.6 Problems with generalized inequalities 596

11.7 Primal-dual interior-point methods 609

11.8 Implementation 615

Bibliography 621

Exercises 623

Appendices 631

A Mathematical background 633

A.1 Norms 633

A.2 Analysis 637

A.3 Functions 639

A.4 Derivatives 640

A.5 Linear algebra 645

Bibliography 652

B Problems involving two quadratic functions 653

B.1 Single constraint quadratic optimization 653

B.2 The S-procedure 655

B.3 The field of values oftwo symmetric matrices 656

B.4 Proofs of the strong duality results 657

Bibliography 659

C Numerical linear algebra background 661

C.1 Matrix structure and algorithm complexity 661

C.2 Solving linear equationswith factored matrices 664

C.3 LU.Cholesky,and LDLT factorization 668

C.4 Block elimination and Schur complements 672

C.5 Solving underdetermined linear equations 681

Bibliography 684

References 685

Notation 697

Index 701

精品推荐