图书介绍

计算数论 第2版 世界图书出版公司pdf电子书版本下载

计算数论  第2版  世界图书出版公司
  • SONG Y.YAN著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:9787506271905
  • 出版时间:2004
  • 标注页数:435页
  • 文件大小:57MB
  • 文件页数:456页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

计算数论 第2版 世界图书出版公司PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.Elementary Number Theory 1

1.1 Introduction 1

1.1.1 What is Number Theory? 1

1.1.2 Applications of Number Theory 13

1.1.3 Algebraic Preliminaries 14

1.2 Theory of Divisibility 21

1.2.1 Basic Concepts and Properties of Divisibility 21

1.2.2 Fundamental Theorem of Arithmetic 27

1.2.3 Mersenne Primes and Fermat Numbers 33

1.2.4 Euclid's Algorithm 40

1.2.5 Continued Fractions 44

1.3 Diophantine Equations 52

1.3.1 Basic Concepts of Diophantine Equations 52

1.3.2 Linear Diophantine Equations 54

1.3.3 Pell's Equations 57

1.4 Arithmetic Functions 63

1.4.1 Multiplicative Functions 63

1.4.2 Functions ?(n),σ(n)and s(n) 66

1.4.3 Perfect,Amicable and Sociable Numbers 71

1.4.4 Functionsφ(n),λ(n)andμ(n) 79

1.5 Distribution of Prime Numbers 85

1.5.1 Prime Distribution Functionπ(x) 85

1.5.2 Approximations of π(x)by x/lnx 87

1.5.3 Approximations of π(x)by Li(x) 94

1.5.4 The Riemannξ-Functionξ(s) 95

1.5.5 The nth Prime 104

1.5.6 Distribution of Twin Primes 106

1.5.7 The Arithmetic Progression of Primes 110

1.6 Theory of Congruences 111

1.6.1 Basic Concepts and Properties of Congruences 111

1.6.2 Modular Arithmetic 118

1.6.3 Linear Congruences 123

1.6.4 The Chinese Remainder Theorem 130

1.6.5 High-Order Congruences 133

1.6.6 Legendre and Jacobi Symbols 139

1.6.7 Orders and Primitive Roots 150

1.6.8 Indices and kth Power Residues 155

1.7 Arithmetic of Elliptic Curves 160

1.7.1 Basic Concepts of Elliptic Curves 160

1.7.2 Geometric Composition Laws of Elliptic Curves 163

1.7.3 Algebraic Computation Laws for Elliptic Curves 164

1.7.4 Group Laws on Elliptic Curves 168

1.7.5 Number of Points on Elliptic Curves 169

1.8 Bibliographic Notes and Further Reading 171

2.Computational/Algorithmic Number Theory 173

2.1 Introduction 173

2.1.1 What is Computational/Algorithmic Number Theory? 174

2.1.2 Effective Computability 177

2.1.3 Computational Complexity 181

2.1.4 Complexity of Number-Theoretic Algorithms 188

2.1.5 Fast Modular Exponentiations 194

2.1.6 Fast Group Operations on Elliptic Curves 198

2.2 Algorithms for Primality Testing 202

2.2.1 Deterministic and Rigorous Primality Tests 202

2.2.2 Fermat's Pseudoprimality Test 206

2.2.3 Strong Pseudoprimality Test 208

2.2.4 Lucas Pseudoprimality Test 215

2.2.5 Elliptic Curve Test 222

2.2.6 Historical Notes on Primality Testing 225

2.3 Algorithms for Integer Factorization 228

2.3.1 Complexity of Integer Factorization 228

2.3.2 Trial Division and Fermat Method 232

2.3.3 Legendre's Congruence 234

2.3.4 Continued FRACtion Method (CFRAC) 237

2.3.5 Quadratic and Number Field Sieves(QS/NFS) 240

2.3.6 Polland's"rho"and"p-1"Methods 244

2.3.7 Lenstra's Elliptic Curve Method (ECM) 251

2.4 Algorithms for Discrete Logarithms 254

2.4.1 Shanks'Baby-Step Giant-Step Algorithm 255

2.4.2 Silver-Pohlig-Hellman Algorithm 258

2.4.3 Index Calculus for Discrete Logarithms 262

2.4.4 Algorithms for Elliptic Curve Discrete Logarithms 266

2.4.5 Algorithm for Root Finding Problem 270

2.5 Quantum Number-Theoretic Algorithms 273

2.5.1 Quantum Information and Computation 273

2.5.2 Quantum Computability and Complexity 278

2.5.3 Quantum Algorithm for Integer Factorization 279

2.5.4 Quantum Algorithms for Discrete Logarithms 285

2.6 Miscellaneous Algorithms in Number Theory 287

2.6.1 Algorithms for Computing π(x) 287

2.6.2 Algorithms for Generating Amicable Pairs 292

2.6.3 Algorithms for Verifying Goldbach's Conjecture 295

2.6.4 Algorithm for Finding Odd Perfect Numbers 299

2.7 Bibliographic Notes and Further Reading 300

3.Applied Number Theory in Computing/Cryptography 303

3.1 Why Applied Number Theory? 303

3.2 Computer Systems Design 305

3.2.1 Representing Numbers in Residue Number Systems 305

3.2.2 Fast Computations in Residue Number Systems 308

3.2.3 Residue Computers 312

3.2.4 Complementary Arithmetic 315

3.2.5 Hash Functions 317

3.2.6 Error Detection and Correction Methods 321

3.2.7 Random Number Generation 326

3.3 Cryptography and Information Security 332

3.3.1 Introduction 332

3.3.2 Secret-Key Cryptography 333

3.3.3 Data/Advanced Encryption Standard (DES/AES) 344

3.3.4 Public-Key Cryptography 348

3.3.5 Discrete Logarithm Based Cryptosystems 354

3.3.6 RSA Public-Key Cryptosystem 358

3.3.7 Quadratic Residuosity Cryptosystems 373

3.3.8 Elliptic Curve Public-Key Cryptosystems 379

3.3.9 Digital Signatures 385

3.3.10 Digital Signature Standard(DSS) 392

3.3.11 Database Security 395

3.3.12 Secret Sharing 399

3.3.13 Internet/Web Security and Electronic Commerce 403

3.3.14 Steganography 409

3.3.15 Quantum Cryptography 410

3.4 Bibliographic Notes and Further Reading 411

Bibliography 415

Index 429

精品推荐