图书介绍
高等数学附册 学习辅导与习题选解 同济·第7版pdf电子书版本下载
- 同济大学数学系编 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040396904
- 出版时间:2014
- 标注页数:404页
- 文件大小:44MB
- 文件页数:422页
- 主题词:高等数学-高等学校-教学参考资料
PDF下载
下载说明
高等数学附册 学习辅导与习题选解 同济·第7版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 函数与极限 1
第一节 映射与函数 1
一、内容要点 1
二、教学要求 3
三、释疑解难 3
四、例题增补 4
五、习题选解 5
第二节 数列的极限 7
一、内容要点 7
二、教学要求 8
三、释疑解难 8
四、例题增补 9
五、习题选解 9
第三节 函数的极限 11
一、内容要点 11
二、教学要求 12
三、释疑解难 12
四、例题增补 13
五、习题选解 14
第四、五节 无穷小与无穷大极限运算法则 16
一、内容要点 16
二、教学要求 17
三、释疑解难 17
四、例题增补 18
五、习题选解 19
第六节 极限存在准则两个重要极限 21
一、内容要点 21
二、教学要求 22
三、释疑解难 22
四、例题增补 23
五、习题选解 24
第七节 无穷小的比较 25
一、内容要点 25
二、教学要求 26
三、释疑解难 26
四、例题增补 28
五、习题选解 29
第八、九节 函数的连续性与连续函数的运算 30
一、内容要点 30
二、教学要求 31
三、释疑解难 31
四、例题增补 32
五、习题选解 34
第十节 闭区间上连续函数的性质 37
一、内容要点 37
二、教学要求 38
三、释疑解难 38
四、例题增补 38
五、习题选解 39
总习题一选解 40
第二章 导数与微分 47
第一节 导数概念 47
一、内容要点 47
二、教学要求 48
三、释疑解难 48
四、例题增补 49
五、习题选解 50
第二节 函数的求导法则 52
一、内容要点 52
二、教学要求 53
三、释疑解难 53
四、例题增补 54
五、习题选解 54
第三节 高阶导数 56
一、内容要点 56
二、教学要求 56
三、释疑解难 56
四、例题增补 57
五、习题选解 57
第四节 隐函数及由参数方程所确定的函数的导数相关变化率 60
一、内容要点 60
二、教学要求 60
三、释疑解难 60
四、例题增补 61
五、习题选解 61
第五节 函数的微分 64
一、内容要点 64
二、教学要求 65
三、释疑解难 65
四、例题增补 65
五、习题选解 65
总习题二选解 67
第三章 微分中值定理与导数的应用 71
第一节 微分中值定理 71
一、内容要点 71
二、教学要求 72
三、释疑解难 72
四、例题增补 73
五、习题选解 74
第二节 洛必达法则 76
一、内容要点 76
二、教学要求 76
三、释疑解难 77
四、例题增补 78
五、习题选解 78
第三节 泰勒公式 79
一、内容要点 79
二、教学要求 80
三、释疑解难 80
四、例题增补 81
五、习题选解 82
第四节 函数的单调性与曲线的凹凸性 84
一、内容要点 84
二、教学要求 84
三、释疑解难 85
四、例题增补 85
五、习题选解 87
第五节 函数的极值与最大值最小值 90
一、内容要点 90
二、教学要求 90
三、释疑解难 90
四、例题增补 91
五、习题选解 92
第六节 函数图形的描绘 94
一、内容要点 94
二、教学要求 95
三、释疑解难 95
四、例题增补 95
五、习题选解 96
第七节 曲率 97
一、内容要点 97
二、教学要求 98
三、释疑解难 98
四、例题增补 98
五、习题选解 99
第八节 方程的近似解 100
一、内容要点 100
二、教学要求 100
三、习题选解 100
总习题三选解 101
第四章 不定积分 106
第一节 不定积分的概念与性质 106
一、内容要点 106
二、教学要求 107
三、释疑解难 107
四、例题增补 109
五、习题选解 109
第二节 换元积分法 110
一、内容要点 110
二、教学要求 111
三、释疑解难 111
四、例题增补 113
五、习题选解 113
第三节 分部积分法 117
一、内容要点 117
二、教学要求 117
三、释疑解难 117
四、例题增补 118
五、习题选解 119
第四节 有理函数的积分 120
一、内容要点 120
二、教学要求 121
三、释疑解难 121
四、例题增补 121
五、习题选解 122
总习题四选解 124
第五章 定积分 129
第一节 定积分的概念与性质 129
一、内容要点 129
二、教学要求 130
三、释疑解难 130
四、例题增补 131
五、习题选解 132
第二节 微积分基本公式 134
一、内容要点 134
二、教学要求 134
三、释疑解难 134
四、例题增补 135
五、习题选解 136
第三节 定积分的换元法和分部积分法 139
一、内容要点 139
二、教学要求 140
三、释疑解难 140
四、例题增补 141
五、习题选解 142
第四节 反常积分 145
一、内容要点 145
二、教学要求 146
三、释疑解难 146
四、例题增补 147
五、习题选解 147
总习题五选解 148
第六章 定积分的应用 153
第一、二、三节 定积分在几何学与物理学上的应用 153
一、内容要点 153
二、教学要求 154
三、释疑解难 155
四、例题增补 156
五、习题选解 157
总习题六选解 161
第七章 微分方程 166
第一节 微分方程的基本概念 166
一、内容要点 166
二、教学要求 166
三、释疑解难 166
四、例题增补 168
五、习题选解 169
第二、三节 可分离变量的微分方程齐次方程 169
一、内容要点 169
二、教学要求 170
三、释疑解难 170
四、例题增补 172
五、习题选解 174
第四节 一阶线性微分方程 177
一、内容要点 177
二、教学要求 178
三、释疑解难 178
四、例题增补 180
五、习题选解 181
第五节 可降阶的高阶微分方程 184
一、内容要点 184
二、教学要求 185
三、释疑解难 185
四、例题增补 186
五、习题选解 188
第六节 高阶线性微分方程 190
一、内容要点 190
二、教学要求 191
三、释疑解难 191
四、例题增补 192
五、习题选解 192
第七、八节 常系数线性微分方程 193
一、内容要点 193
二、教学要求 194
三、释疑解难 194
四、例题增补 196
五、习题选解 197
总习题七选解 201
第八章 向量代数与空间解析几何 206
第一节 向量及其线性运算 206
一、内容要点 206
二、教学要求 207
三、释疑解难 207
四、例题增补 208
五、习题选解 209
第二节 数量积向量积混合积 210
一、内容要点 210
二、教学要求 211
三、释疑解难 211
四、例题增补 211
五、习题选解 212
第三节 平面及其方程 213
一、内容要点 213
二、教学要求 214
三、释疑解难 214
四、例题增补 214
五、习题选解 215
第四节 空间直线及其方程 216
一、内容要求 216
二、教学要求 217
三、释疑解难 217
四、例题增补 218
五、习题选解 219
第五节 曲面及其方程 221
一、内容要点 221
二、教学要求 221
三、释疑解难 222
四、例题增补 222
五、习题选解 222
第六节 空间曲线及其方程 223
一、内容要点 223
二、教学要求 224
三、释疑解难 224
四、例题增补 224
五、习题选解 225
总习题八选解 226
第九章 多元函数微分法及其应用 230
第一节 多元函数的基本概念 230
一、内容要点 230
二、教学要求 232
三、释疑解难 232
四、例题增补 234
五、习题选解 234
第二节 偏导数 236
一、内容要点 236
二、教学要求 237
三、释疑解难 237
四、例题增补 238
五、习题选解 239
第三节 全微分 240
一、内容要点 240
二、教学要求 241
三、释疑解难 241
四、例题增补 242
五、习题选解 243
第四节 多元复合函数的求导法则 245
一、内容要点 245
二、教学要求 246
三、释疑解难 246
四、例题增补 247
五、习题选解 249
第五节 隐函数的求导公式 252
一、内容要点 252
二、教学要求 253
三、释疑解难 253
四、例题增补 254
五、习题选解 257
第六节 多元函数微分学的几何应用 260
一、内容要点 260
二、教学要求 262
三、释疑解难 262
四、例题增补 263
五、习题选解 264
第七节 方向导数和梯度 267
一、内容要点 267
二、教学要求 268
三、释疑解难 268
四、例题增补 270
五、习题选解 271
第八节 多元函数的极值及其求法 272
一、内容要点 272
二、教学要求 273
三、释疑解难 274
四、例题增补 275
五、习题选解 277
总习题九选解 279
第十章 重积分 285
第一、二节 二重积分的概念、性质及计算法 285
一、内容要点 285
二、教学要求 288
三、释疑解难 288
四、例题增补 289
五、习题选解 291
第三节 三重积分的概念、性质及计算法 297
一、内容要点 297
二、教学要求 299
三、释疑解难 299
四、例题增补 301
五、习题选解 303
第四节 重积分的应用 305
一、内容要点 305
二、教学要求 306
三、释疑解难 306
四、例题增补 308
五、习题选解 309
总习题十选解 312
第十一章 曲线积分与曲面积分 321
第一节 对弧长的曲线积分(第一类曲线积分) 321
一、内容要点 321
二、教学要求 322
三、释疑解难 323
四、例题增补 324
五、习题选解 326
第二节 对坐标的曲线积分(第二类曲线积分) 328
一、内容要点 328
二、教学要求 330
三、释疑解难 330
四、例题增补 331
五、习题选解 333
第三节 格林公式及其应用 335
一、内容要点 335
二、教学要求 336
三、释疑解难 336
四、例题增补 338
五、习题选解 339
第四、五节 两类曲面积分的概念、性质及计算法 344
一、内容要点 344
二、教学要求 347
三、释疑解难 347
四、例题增补 349
五、习题选解 352
第六、七节 高斯公式和斯托克斯公式 356
一、内容要点 356
二、教学要求 357
三、释疑解难 357
四、例题增补 358
五、习题选解 361
总习题十一选解 364
第十二章 无穷级数 370
第一节 常数项级数及其性质 370
一、内容要点 370
二、教学要求 371
三、释疑解难 371
四、例题增补 372
五、习题选解 373
第二节 常数项级数的审敛法 374
一、内容要点 374
二、教学要求 376
三、释疑解难 376
四、例题增补 378
五、习题选解 380
第三节 幂级数 381
一、内容要点 381
二、教学要求 383
三、释疑解难 383
四、例题增补 384
五、习题选解 386
第四、五节 函数展开成幂级数及其应用 387
一、内容要点 387
二、教学要求 388
三、释疑解难 388
四、例题增补 390
五、习题选解 393
第七、八节 傅里叶级数与一般周期函数的傅里叶级数 394
一、内容要点 394
二、教学要求 396
三、释疑解难 396
四、例题增补 397
五、习题选解 398
总习题十二选解 401