图书介绍
微分几何专题pdf电子书版本下载

- 陈省身著 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040465172
- 出版时间:2016
- 标注页数:227页
- 文件大小:27MB
- 文件页数:239页
- 主题词:
PDF下载
下载说明
微分几何专题PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 From Triangles to Manifolds 1
1.1 Geometry 1
1.2 Triangles 1
1.3 Curves in the plane;rotation index and regular homotopy 2
1.4 Euclidean three-space 4
1.5 From coordinate spaces to manifolds 7
1.6 Manifolds;local tools 8
1.7 Homology 9
1.8 Vector fields and generalizations 11
1.9 Elliptic differential equations 12
1.10 Euler characteristic as a source of global invariants 13
1.11 Gauge field theory 13
1.12 Concluding remarks 14
2 Topics in Differential Geometry 17
2.1 General notions on differentiable manifolds 17
2.1.1 Homology and cohomology groups of an abstract complex 17
2.1.2 Product theory 20
2.1.3 An example 22
2.1.4 Algebra of a vector space 24
2.1.5 Differentiable manifolds 26
2.1.6 Multiple integrals 28
2.2 Riemannian manifolds 31
2.2.1 Riemannian manifolds in Euclidean space 31
2.2.2 Imbedding and rigidity problems in Euclidean space 35
2.2.3 Affine connection and absolute differentiation 39
2.2.4 Riemannian metric 41
2.2.5 The Gauss-Bonnet formula 44
2.3 Theory of connections 46
2.3.1 Resume on fiber bundles 47
2.3.2 Connections 49
2.3.3 Local theory of connections;the curvature tensor 52
2.3.4 The homomorphism h and its independence of connection 54
2.3.5 The homomorphism h for the universal bundle 57
2.3.6 The fundamental theorem 60
2.4 Bundles with the classical groups as structural groups 61
2.4.1 Homology groups of Grassmann manifolds 62
2.4.2 Differential forms in Grassmann manifolds 67
2.4.3 Multiplicative properties of the cohomology ring of a Grassmann manifold 74
2.4.4 Some applications 78
2.4.5 Duality theorems 83
2.4.6 An application to projective differential geometry 86
3 Curves and Surfaces in Euclidean Space 89
3.1 Theorem of turning tangents 89
3.2 The four-vertex theorem 94
3.3 Isoperimetric inequality for plane curves 96
3.4 Total curvature of a space curve 100
3.5 Deformation of a space curve 105
3.6 The Gauss-Bonnet formula 108
3.7 Uniqueness theorems of Cohn-Vossen and Minkowski 114
3.8 Bernstein's theorem on minimal surfaces 119
4 Minimal Submanifolds in a Riemannian Manifold 123
4.1 Review of Riemannian geometry 123
4.2 The first vairiation 128
4.3 Minimal submanifolds in Euclidean space 129
4.4 Minimal surfaces in Euclidean space 134
4.5 Minimal submanifolds on the sphere 141
4.6 Laplacian of the second fundamental form 146
4.7 Inequality of Simons 148
4.8 The second variation 151
4.9 Minimal cones in Euclidean space 155
5 Characteristic Classes and Characteristic Forms 163
5.1 Stiefel-Whitney and Pontrjagin classes 163
5.2 Characteristic classes in terms of curvature 165
5.3 Transgression 166
5.4 Holomorphic line bundles and the Nevanlinna theory 168
6 Geometry and Physics 171
6.1 Euclid 171
6.2 Geometry and physics 172
6.3 Groups of transformations 172
6.4 Riemannian geometry 173
6.5 Relativity 173
6.6 Unified field theory 173
6.7 Weyl's abelian gauge field theory 174
6.8 Vector bundles 175
6.9 Why Gauge theory 175
7 The Geometry of G-Structures 177
7.1 Introduction 177
7.2 Riemannian structure 179
7.3 Connections 182
7.4 G-structure 185
7.5 Harmonic forms 189
7.6 Leaved structure 192
7.7 Complex structure 194
7.8 Sheaves 198
7.9 Characteristic classes 202
7.10 Riemann-Roch,Hirzebruch,Grothendieck,and Atiyah-Singer Theorems 207
7.11 Holomorphic mappings of complex analytic manifolds 212
7.12 Isometric mappings of Riemannian manifolds 216
7.13 General theory of G-structures 218