图书介绍

线性偏微分算子分析 第2卷pdf电子书版本下载

线性偏微分算子分析  第2卷
  • (瑞典)赫尔曼德尔著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7519209278
  • 出版时间:2016
  • 标注页数:392页
  • 文件大小:46MB
  • 文件页数:402页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

线性偏微分算子分析 第2卷PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction 1

Chapter Ⅹ.Existence and Approximation of Solutions of Differential Equations 3

Summary 3

10.1.The Spaces Bp,k 3

10.2.Fundamental Solutions 16

10.3.The Equation P(D)u=f when f∈?′ 29

10.4.Comparison of Differential Operators 32

10.5.Approximation of Solutions of Homogeneous Differential Equations 39

10.6.The Equation P(D)u=f when f is in a Local Space ?′F 41

10.7.The Equation P(D)u=f when f∈?′(X) 45

10.8.The Geometrical Meaning of the Convexity Conditions 50

Notes 58

Chapter Ⅺ.Interior Regularity of Solutions of Differential Equations 60

Summary 60

11.1.Hypoelliptic Operators 61

11.2.Partially Hypoelliptic Operators 69

11.3.Continuation of Differentiability 73

11.4.Estimates for Derivatives of High Order 85

Notes 92

Chapter Ⅻ.The Cauchy and Mixed Problems 94

Summary 94

12.1.The Cauchy Problem for the Wave Equation 96

12.2.The Oscillatory Cauchy Problem for the Wave Equation 104

12.3.Necessary Conditions for Existence and Uniqueness of Solutions to the Cauchy Problem 110

12.4.Properties of Hyperbolic Polynomials 112

12.5.The Cauchy Problem for a Hyperbolic Equation 120

12.6.The Singularities of the Fundamental Solution 125

12.7.A Global Uniqueness Theorem 133

12.8.The Characteristic Cauchy Problem 143

12.9.Mixed Problems 162

Notes 180

Chapter ⅩⅢ.Differential Operators of Constant Strength 182

Summary 182

13.1.Definitions and Basic Properties 182

13.2.Existence Theorems when the Coefficients are Merely Continuous 184

13.3.Existence Theorems when the Coefficients are in C∞ 186

13.4.Hypoellipticity 191

13.5.Global Existence Theorems 194

13.6.Non-uniqueness for the Cauchy Problem 201

Notes 224

Chapter ⅩⅣ.Scattering Theory 225

Summary 225

14.1.Some Function Spaces 227

14.2.Division by Functions with Simple Zeros 232

14.3.The Resolvent of the Unperturbed Operator 237

14.4.Short Range Perturbations 243

14.5.The Boundary Values of the Resolvent and the Point Spectrum 251

14.6.The Distorted Fourier Transforms and the Continuous Spectrum 255

14.7.Absence of Embedded Eigenvalues 264

Notes 268

Chapter ⅩⅤ.Analytic Function Theory and Differential Equations 270

Summary 270

15.1.The Inhomogeneous Cauchy-Riemann Equations 271

15.2.The Fourier-Laplace Transform of Bc2,k(X)when X is Convex 279

15.3.Fourier-Laplace Representation of Solutions of Differential Equations 287

15.4.The Fourier-Laplace Transform of C?(X)when X is Convex 296

Notes 300

Chapter ⅩⅥ.Convolution Equations 302

Summary 302

16.1.Subharmonic Functions 303

16.2.Plurisubharmonic Functions 314

16.3.The Support and Singular Support of a Convolution 319

16.4.The Approximation Theorem 335

16.5.The Inhomogeneous Convolution Equation 341

16.6.Hypoelliptic Convolution Equations 353

16.7.Hyperbolic Convolution Equations 356

Notes 360

Appendix A.Some Algebraic Lemmas 362

A.1.The Zeros of Analytic Functions 362

A.2.Asymptotic Properties of Algebraic Functions of Several Variables 364

Notes 371

Bibliography 373

Index 391

Index of Notation 392

精品推荐