图书介绍

常微分方程及其应用 理论与模型pdf电子书版本下载

常微分方程及其应用  理论与模型
  • 周宇虹,罗建书编 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030301253
  • 出版时间:2010
  • 标注页数:213页
  • 文件大小:6MB
  • 文件页数:221页
  • 主题词:常微分方程-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

常微分方程及其应用 理论与模型PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 First-order Differential Equations 1

1.1 Introduction 1

Exercise 1.1 7

1.2 First-order Linear Differential Equations 8

1.2.1 First-order Homogeneous Linear Differential Equations 8

1.2.2 First-order Nonhomogeneous Linear Differential Equations 11

1.2.3 Bernoulli Equations 16

Exercise 1.2 18

1.3 Separable Equations 19

1.3.1 Separable Equations 19

1.3.2 Homogeneous Equations 23

Exercise 1.3 26

1.4 Applications 27

Module 1 The Spread of Technological Innovations 27

Module 2 The Van Meegeren Art Forgeries 30

1.5 Exact Equations 35

1.5.1 Criterion for Exactness 35

1.5.2 Integrating Factor 39

Exercise 1.5 42

1.6 Existence and Uniqueness of Solutions 43

Exercise 1.6 50

Chapter 2 Second-order Differential Equations 51

2.1 General Solutions of Homogeneous Second-order Linear Equations 51

Exercise 2.1 59

2.2 Homogeneous Second-order Linear Equations with Constant Coefficients 60

2.2.1 The Characteristic Equation Has Distinct Real Roots 61

2.2.2 The Characteristic Equation Has Repeated Roots 62

2.2.3 The Characteristic Equation Has Complex Conjugate Roots 63

Exercise 2.2 65

2.3 Nonhomogeneous Second-order Linear Equations 66

2.3.1 Structure of General Solutions 66

2.3.2 Method of Variation of Parameters 68

2.3.3 Methods for Some Special Form of the Nonhomogeneous Term g(t) 70

Exercise 2.3 76

2.4 Applications 77

Module 1 An Atomic Waste Disposal Problem 77

Module 2 Mechanical Vibrations 82

Chapter 3 Linear Systems of Differential Equations 90

3.1 Basic Concepts and Theorems 90

Exercise 3.1 98

3.2 The Eigenvalue-Eigenvector Method of Finding Solutions 99

3.2.1 The Characteristic Polynomial of A Has n Distinct Real Eigenvalues 100

3.2.2 The Characteristic Polynomial of A Has Complex Eigenvalues 101

3.2.3 The Characteristic Polynomial of A Has Equal Eigenvalues 104

Exercise 3.2 108

3.3 Fundamental Matrix Solution;Matrix-valued Exponential Function eAt 109

Exercise 3.3 113

3.4 Nonhomogeneous Equations;Variation of Parameters 115

Exercise 3.4 120

3.5 Applications 121

Module 1 The Principle ofCompetitive Exclusion in Population Biology 121

Module 2 A Model for the Blood Glucose Regular System 127

Chapter 4 Laplace Transforms and Their Applications in Solving 136

Differential Equations 136

4.1 Laplace Transforms 136

Exercise 4.1 138

4.2 Properties of Laplace Transforms 138

Exercise 4.2 145

4.3 Inverse Laplace Transforms 146

Exercise 4.3 148

4.4 Solving Differential Equations by Laplace Transforms 148

4.4.1 The Right-Hand Side of the Differential Equation is Discontinuous 152

4.4.2 The Right-Hand Side of Differential Equation is an Impulsive Function 154

Exerci8e 4.4 156

4.5 Solving Systems of Differential Equations by Laplace Transforms 157

Exercise 4.5 159

Chapter 5 Introduction to the Stability Theory 161

5.1 Introduction 161

Exercise 5.1 164

5.2 Stability of the Solutions of Linear System 164

Exercise 5.2 171

5.3 Geometrical Characteristics of Solutions of the System of Differential Equations 173

5.3.1 Phase Space and Direction Field 173

5.3.2 Geometric Characteristics of the Orbits near a Singular Point 176

5.3.3 Stability of Singular Points 180

Exercise 5.3 183

5.4 Applications 183

Module 1 Volterra's Principle 183

Module 2 Mathematical Theories of War 188

Answers to Selected Exercises 196

References 209

附录 软件包Iode简介 210

精品推荐