图书介绍
线性代数及其应用 英文版pdf电子书版本下载
- (美)DavidC.Lay著 著
- 出版社: 北京:电子工业出版社
- ISBN:9787121113956
- 出版时间:2010
- 标注页数:560页
- 文件大小:113MB
- 文件页数:577页
- 主题词:线性代数-高等学校-教材-英文
PDF下载
下载说明
线性代数及其应用 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Linear Equations in Linear Algebra 1
INTRODUCTORY EXAMPLE:Linear Models in Economics and Engineering 1
1.1 Systems of Linear Equations 2
1.2 Row Reduction and Echelon Forms 14
1.3 Vector Equations 28
1.4 The Matrix Equation Ax=b 40
1.5 Solution Sets of Linear Systems 50
1.6 Applications of Linear Systems 57
1.7 Linear Independence 65
1.8 Introduction to Linear Transformations 73
1.9 The Matrix of a Linear Transformation 82
1.10 Linear Models in Business,Science,and Engineering 92
Supplementary Exercises 102
CHAPTER 2 Matrix Algebra 105
INTRODUCTORY EXAMPLE:Computer Models in Aircraft Design 105
2.1 Matrix Operations 107
2.2 The Inverse of a Matrix 118
2.3 Characterizations of Invertible Matrices 128
2.4 Partitioned Matrices 134
2.5 Matrix Factorizations 142
2.6 The Leontief Input-Output Model 152
2.7 Applications to Computer Graphics 158
2.8 Subspaces of Rn 167
2.9 Dimension and Rank 176
Supplementary Exercises 183
CHAPTER 3 Determinants 185
INTRODUCTORY EXAMPLE:Determinants in Analytic Geometry 185
3.1 Introduction to Determinants 186
3.2 Properties of Determinants 192
3.3 Cramer's Rule,Volume,and Linear Transformations 201
Supplementary Exercises 211
CHAPTER 4 Vector Spaces 215
INTRODUCTORY EXAMPLE:Space Flight and Control Systems 215
4.1 Vector Spaces and Subspaces 216
4.2 Null Spaces,Column Spaces,and Linear Transformations 226
4.3 Linearly Independent Sets;Bases 237
4.4 Coordinate Systems 246
4.5 The Dimension of a Vector Space 256
4.6 Rank 262
4.7 Change of Basis 271
4.8 Applications to Difference Equations 277
4.9 Applications to Markov Chains 288
Supplementary Exercises 299
CHAPTER 5 Eigenvalues and Eigenvectors 301
INTRODUCTORY EXAMPLE:Dynamical Systems and Spotted Owls 301
5.1 Eigenvectors and Eigenvalues 302
5.2 The Characteristic Equation 310
5.3 Diagonalization 319
5.4 Eigenvectors and Linear Transformations 327
5.5 Complex Eigenvalues 335
5.6 Discrete Dynamical Systems 342
5.7 Applications to Differential Equations 353
5.8 Iterative Estimates for Eigenvalues 363
Supplementary Exercises 370
CHAPTER 6 Orthogonality and Least Squares 373
INTRODUCTORY EXAMPLE:Readjusting the North American Datum 373
6.1 Inner Product,Length,and Orthogonality 375
6.2 Orthogonal Sets 384
6.3 Orthogonal Projections 394
6.4 The Gram-Schmidt Process 402
6.5 Least-Squares Problems 409
6.6 Applications to Linear Models 419
6.7 Inner Product Spaces 427
6.8 Applications of Inner Product Spaces 436
Supplementary Exercises 444
CHAPTER 7 SVmmetric Matrices and Quadratic Forms 447
INTRODUCTORY EXAMPLE:Multichannel Image Processing 447
7.1 Diagonalization of Symmetric Matrices 449
7.2 Quadratic Forms 455
7.3 Constrained Optimization 463
7.4 The Singular Value Decomposition 471
7.5 Applications to Image Processing and Statistics 482
Supplementary Exercises 491