图书介绍

矩阵论引论pdf电子书版本下载

矩阵论引论
  • 陈祖明主编 著
  • 出版社: 北京:北京航空航天大学出版社
  • ISBN:7810127608
  • 出版时间:1998
  • 标注页数:365页
  • 文件大小:7MB
  • 文件页数:379页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

矩阵论引论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 矩阵的初等理论 1

1.1 矩阵及其初等运算 1

1.矩阵和向量 1

习题1.1 4

2.矩阵的分块乘法与初等变换 6

习题1.2 14

1.2 矩阵的行列式和矩阵的秩 16

1.行列式及其性质 16

习题1.3 21

2.矩阵的秩及其性质 25

习题1.4 29

1.3 矩阵的迹和矩阵的特征值 31

1.矩阵的迹及其初等性质 31

2.矩阵的特征值及其计算 32

习题1.5 39

第二章 线性代数基础 45

2.1 线性空间 45

1.线性空间的定义及例子 45

习题2.1 50

2.子空间的概念 52

习题2.2 58

3.基底和维数 61

习题2.3 75

4.和空间与直和空间概念的推广 78

2.2 内积空间 79

1.内积空间的定义及例子 80

习题2.4 83

2.由内积诱导出的几何概念 87

3.标准正交基底与 Gram—Schmidt 过程 89

习题2.5 98

2.3 线性变换 102

1.映射和线性变换 102

习题2.6 105

2.线性变换的运算 107

习题2.7 109

3.与线性变换有关的子空间 110

习题2.8 113

2.4 线性变换的矩阵表示和空间的同构 115

1.线性变换的矩阵表示 116

2.线性空间的同构 121

习题2.9 126

2.5 线性变换的最简矩阵表示 130

1.线性变换的特征值与特征向量 130

习题2.10 143

2.线性变换的零化多项式及最小多项式 146

习题2.11 153

3.不可对角化线性变换的最简矩阵表示 156

习题2.12 169

第三章 矩阵的几种重要分解 175

3.1 矩阵的 UR 分解及其推论 175

1.满秩方阵的 UR 分解 175

2.长方矩阵的分解 176

3.几个具体例子 180

4.关于矩阵的满秩分解的几个推论 185

3.2 舒尔引理与正规矩阵的分解 187

1.舒尔引理 187

2.矩阵的奇异值分解和极分解 192

习题3.1 195

3.3 幂等矩阵、投影算子及矩阵的谱分解式 199

1.投影算子、幂等算子和幂等矩阵 199

2.可对角化矩阵的谱分解 206

习题3.2 215

第四章 矩阵的广义逆 218

4.1 Moore-Penrose 广义逆矩阵 218

4.2 广义逆矩阵 A(1) 219

1.广义逆 A(1)的定义和构造 219

2.广义逆 A(1)的性质 230

3.广义逆 A(1)应用于解线性方程组 233

习题4.1 234

4.3 广义逆矩阵 A(1,2) 238

1.广义逆 A(1,2)的定义及存在性 238

2.广义逆 A(1,2)的性质 239

3.广义逆 A(1,2)的构造 243

习题4.2 245

1.广义逆 A(1,3)的定义和构造 246

4.4 广义逆矩阵 A(1,3) 246

2.广义逆 A(1,3)应用于解方程组 248

习题4.3 250

4.5 广义逆矩阵 A(1,4) 252

1.广义逆 A(1,4)的定义和构造 252

2.广义逆 A(1,4)应用于解方程组 254

习题4.4 256

4.6 M-P 广义逆矩阵 258

1.M-P 广义逆的存在及性质 258

2.M-P 广义逆的几种显式表示 263

3.M-P 广义逆用于解线性方程组 266

习题4.5 268

4.7 几种计算 A+的直接方法 270

1.Lagrange-Sylvester 公式 271

2.Neumann 展式 271

1.向量范数 274

第五章 矩阵分析 274

5.1 向量范数及矩阵范数 274

2.矩阵范数 281

习题5.1 288

5.2 矩阵序列与矩阵级数 291

1.向量序列的极限 291

2.矩阵序列的极限 292

3.矩阵级数 295

习题5.2 298

5.3 矩阵的微分与积分 299

1.函数矩阵及其极限 299

2.函数矩阵的微分和积分 301

3.纯量函数关于矩阵的导数 304

4.矩阵对矩阵的导数 309

习题5.3 313

1.矩阵多项式 314

5.4 矩阵函数 314

2.矩阵函数 319

3.常用矩阵函数的性质 339

习题5.4 342

5.5 矩阵分析在微分方程中的应用 346

习题5.5 348

第六章 矩阵的 Kronecker 积 350

6.1 矩阵的 Kronecker 积的定义和性质 350

1.Kronecker 积的定义 350

2.Kronecker 积的性质 350

6.2 Kronecker 积的应用 354

1.矩阵的拉直及其与直积的关系 354

2.直积的应用 355

习题6.1 362

精品推荐