图书介绍

索伯列夫空间pdf电子书版本下载

索伯列夫空间
  • 亚当斯(R.A.Adams)著;叶其孝译 著
  • 出版社: 北京:人民教育出版社
  • ISBN:13012·0680
  • 出版时间:1981
  • 标注页数:323页
  • 文件大小:8MB
  • 文件页数:335页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

索伯列夫空间PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

序言 1

空间与范数表 1

第一章 预备知识 1

记号 1

拓扑向量空间 2

赋范空间 4

赋范对偶 6

紧集 7

弱拓扑和弱收敛 7

一致凸性 8

算子和嵌入 10

连续函数空间 11

Bn中的Lebesgue测度 15

Lebesgue积分 18

广义函数和弱导数 22

第二章 空间Lp(Ω) 26

定义和基本性质 26

Lp(Ω)的完备性 31

用连续函数来逼近,可分性 32

软化子(Mollifiers),用光滑函数来逼近 34

Lp(Ω)中的准紧集(Precompact Sets) 36

Lp(Ω)的一致凸性 40

Lp(Ω)的赋范对偶 45

第三章 空间Wm,p(Ω) 51

定义和基本性质 51

对偶性,空间W-m,p′(Ω) 54

用Ω上的光滑函数来逼近 60

用Rn上的光滑函数来逼近 63

用C?(Ω)中的函数来逼近;(m,p′)一极集(polar sets) 65

坐标变换 74

第四章 内插和延拓定理 77

区域的几何性质 77

中间导数的内插不等式 83

包含紧子区域的内插不等式 94

延拓定理 98

第五章 Wm,p(Ω)的嵌入 112

Sobolev嵌入定理 112

嵌入定理的证明 116

Wm,p(Ω)中的函数在Ω边界上的迹 134

作为Banach代数的Wm,p(Ω) 136

反例和非嵌入定理 139

有尖点区域的嵌入定理 146

包含带权范数的嵌入不等式 151

定理5.35--5.37的证明 167

第六章 Wm,p(Ω)的紧嵌入 172

Relich-Kondrachov定理 172

两个反例 178

W?,p(Ω)在无界区域上的紧嵌入 180

W?,p(Ω)的一个等价范数 189

无界区域--在无穷远处的衰减 192

无界区域--Wm,p(Ω)的紧嵌入 203

Hilbert-Schmidt嵌入 208

第七章 分数次空间 213

概要 213

Bochner积分 214

算子半群和抽象Cauchy问题 216

Lions的迹空间 221

迹空间的半群表征 229

高次迹 235

空间W?p(Ω) 244

W?p(Ω)的一个内在范数 248

嵌入定理 256

Bessel位势--空间L?,p(Ω) 261

其它分数次空间 266

引言 271

第八章 Orlicz空间和Orlicz-Sobolev空间 271

N-函数 272

Orlicz空间 276

Orlicz空间中的对偶 282

可分性和紧性定理 285

Sobolev 嵌入定理的一个极限情形 287

Orlicz-Sobolev 空间 292

Orlicz-Sobolev空间的嵌入定理 293

参考文献 308

索引 314

精品推荐