图书介绍

普林斯顿数学指南 第3卷pdf电子书版本下载

普林斯顿数学指南  第3卷
  • (英)高尔斯主编 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030395283
  • 出版时间:2014
  • 标注页数:544页
  • 文件大小:286MB
  • 文件页数:575页
  • 主题词:数学-高等学校-教学参考资料

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

普林斯顿数学指南 第3卷PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第Ⅴ部分 定理与问题 1

Ⅴ.1 ABC猜想 1

Ⅴ.2 阿蒂亚-辛格指标定理 2

Ⅴ.3 巴拿赫-塔尔斯基悖论 6

Ⅴ.4 Birch-Swinnerton-Dyer猜想 8

Ⅴ.5 卡尔松定理 9

Ⅴ.6 中心极限定理 11

Ⅴ.7 有限单群的分类 12

Ⅴ.8 狄利克雷素数定理 14

Ⅴ.9 遍历定理 14

Ⅴ.10 费马大定理 19

Ⅴ.11 不动点定理 21

Ⅴ.12 四色定理 27

Ⅴ.13 代数的基本定理 31

Ⅴ.14 算术的基本定理 32

Ⅴ.15 哥德尔定理 33

Ⅴ.16 Gromov多项式增长性定理 37

Ⅴ.17 希尔伯特零点定理 38

Ⅴ.18 连续统假设的独立性 38

Ⅴ.19 不等式 39

Ⅴ.20 停机问题的不可解性 44

Ⅴ.21 五次方程的不可解性 48

Ⅴ.22 刘维尔定理和罗特定理 50

Ⅴ.23 Mostow强刚性定理 52

Ⅴ.24 p对Np问题 56

Ⅴ.25 庞加莱猜想 56

Ⅴ.26 素数定理与黎曼假设 57

Ⅴ.27 加法数论的问题与结果 58

Ⅴ.28 从二次互反性到类域理论 63

Ⅴ.29 曲线上的有理点与莫德尔猜想 68

Ⅴ.30 奇异性的消解 71

Ⅴ.31 黎曼-罗赫定理 72

Ⅴ.32 Robertson-Seymour定理 74

Ⅴ.33 三体问题 76

Ⅴ.34 单值化定理 80

Ⅴ.35 韦伊猜想 81

第Ⅵ部分 数学家传记 87

Ⅵ.1 毕达哥拉斯 87

Ⅵ.2 欧几里得 88

Ⅵ.3 阿基米德 90

Ⅵ.4 阿波罗尼乌斯 91

Ⅵ.5 阿尔·花拉子米 93

Ⅵ.6 斐波那契 94

Ⅵ.7 卡尔达诺 94

Ⅵ.8 庞贝里 95

Ⅵ.9 维特 95

Ⅵ.10 斯特凡 97

Ⅵ.11 笛卡儿 97

Ⅵ.12 费马 100

Ⅵ.13 帕斯卡 102

Ⅵ.14 牛顿 103

Ⅵ.15 莱布尼兹 105

Ⅵ.16 泰勒 108

Ⅵ.17 哥德巴赫 109

Ⅵ.18 伯努利家族 109

Ⅵ.19 欧拉 112

Ⅵ.20 达朗贝尔 116

Ⅵ.21 华林 118

Ⅵ.22 拉格朗日 119

Ⅵ.23 拉普拉斯 122

Ⅵ.24 勒让德 124

Ⅵ.25 傅里叶 126

Ⅵ.26 高斯 128

Ⅵ.27 泊松 129

Ⅵ.28 波尔扎诺 131

Ⅵ.29 柯西 132

Ⅵ.30 莫比乌斯 133

Ⅵ.31 罗巴切夫斯基 134

Ⅵ.32 格林 136

Ⅵ.33 阿贝尔 137

Ⅵ.34 鲍耶伊 139

Ⅵ.35 雅可比 140

Ⅵ.36 狄利克雷 142

Ⅵ.37 哈密顿 144

Ⅵ.38 德·摩根 145

Ⅵ.39 刘维尔 145

Ⅵ.40 库默尔 147

Ⅵ.41 伽罗瓦 148

Ⅵ.42 西尔维斯特 150

Ⅵ.43 布尔 152

Ⅵ.44 魏尔斯特拉斯 154

Ⅵ.45 切比雪夫 155

Ⅵ.46 凯莱 156

Ⅵ.47 厄尔米特 158

Ⅵ.48 克罗内克 159

Ⅵ.49 黎曼 161

Ⅵ.50 戴德金 163

Ⅵ.51 马蒂厄 165

Ⅵ.52 约当 165

Ⅵ.53 李 166

Ⅵ.54 康托 168

Ⅵ.55 克利福德 171

Ⅵ.56 弗雷格 172

Ⅵ.57 克莱因 174

Ⅵ.58 弗罗贝尼乌斯 176

Ⅵ.59 柯瓦列夫斯卡娅 177

Ⅵ.60 伯恩塞德 179

Ⅵ.61 庞加莱 180

Ⅵ.62 佩亚诺 182

Ⅵ.63 希尔伯特 183

Ⅵ.64 闵可夫斯基 186

Ⅵ.65 阿达玛 187

Ⅵ.66 弗雷德霍姆 189

Ⅵ.67 德·拉·瓦莱·布散 189

Ⅵ.68 豪斯道夫 191

Ⅵ.69 嘉当 192

Ⅵ.70 博雷尔 194

Ⅵ.71 罗素 194

Ⅵ.72 勒贝格 196

Ⅵ.73 哈代 197

Ⅵ.74 里斯 200

Ⅵ.75 布劳威尔 201

Ⅵ.76 艾米·诺特 203

Ⅵ.77 谢尔品斯基 205

Ⅵ.78 伯克霍夫 206

Ⅵ.79 李特尔伍德 208

Ⅵ.80 外尔 211

Ⅵ.81 斯科伦 213

Ⅵ.82 拉马努金 214

Ⅵ.83 柯朗 216

Ⅵ.84 巴拿赫 218

Ⅵ.85 维纳 221

Ⅵ.86 阿廷 223

Ⅵ.87 塔尔斯基 225

Ⅵ.88 科尔莫戈罗夫 226

Ⅵ.89 丘奇 229

Ⅵ.90 霍奇 230

Ⅵ.91 冯·诺依曼 231

Ⅵ.92 哥德尔 234

Ⅵ.93 韦伊 235

Ⅵ.94 图灵 237

Ⅵ.95 鲁宾逊 239

Ⅵ.96 布尔巴基 241

第Ⅶ部分 数学的影响 245

Ⅶ.1 数学与化学 245

Ⅶ.2 数理生物学 260

Ⅶ.3 小波及其应用 276

Ⅶ.4 网络中的流通的数学 298

Ⅶ.5 算法设计的数学 311

Ⅶ.6 信息的可靠传输 322

Ⅶ.7 数学与密码 335

Ⅶ.8 数学和经济学的思考 349

Ⅶ.9 货币的数学 370

Ⅶ.10 数理统计学 381

Ⅶ.11 数学与医学统计 389

Ⅶ.12 数学的分析与哲学的分析 399

Ⅶ.13 数学与音乐 411

Ⅶ.14 数学与艺术 425

第Ⅷ部分 卷末的话:一些看法 446

Ⅷ.1 解题的艺术 446

Ⅷ.2 您会问“数学是为了什么?” 464

Ⅷ.3 数学的无处不在 482

Ⅷ.4 数的意识 492

Ⅷ.5 数学:一门实验科学 505

Ⅷ.6 对青年数学家的建议 519

Ⅷ.7 数学大事年表 534

精品推荐