图书介绍

代数曲线几何 第1卷 英文pdf电子书版本下载

代数曲线几何  第1卷  英文
  • (意)阿尔巴雷洛(E.Arbarello),M.Cornalba,P.A.Griffiths,J.Harris著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510075902
  • 出版时间:2014
  • 标注页数:388页
  • 文件大小:35MB
  • 文件页数:405页
  • 主题词:代数曲线-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

代数曲线几何 第1卷 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ Preliminaries 1

1.Divisors and Line Bundles on Curves 1

2.The Riemann-Roch and Duality Theorems 6

3.Abel's Theorem 15

4.Abelian Varieties and the Theta Function 20

5.Poincaré's Formula and Riemann's Theorem 25

6.A Few Words About Moduli 28

Bibliographical Notes 30

Exercises 31

A.Elementary Exercises on Plane Curves 31

B.Projections 35

C.Ramification and Plücker Formulas 37

D.Miscellaneous Exercises on Linear Systems 40

E.Weierstrass Points 41

F.Automorphisms 44

G.Period Matrices 48

H.Elementary Properties of Abelian Varieties 48

APPENDIX A The Riemann-Roch Theorem,Hodge Theorem,and Adjoint Linear Systems 50

1.Applications of the Discussion About Plane Curves with Nodes 56

2.Adjoint Conditions in General 57

CHAPTER Ⅱ Determinantal Varieties 61

1.Tangent Cones to Analytic Spaces 61

2.Generic Determinantal Varieties:Geometric Description 67

3.The Ideal of a Generic Determinantal Variety 70

4.Determinantal Varieties and Porteous'Formula 83

(i)Sylvester's Determinant 87

(ii)The Top Chern Class of a Tensor Product 89

(iii)Porteous'Formula 90

(iv)What Has Been Proved 92

5.A Few Applications and Examples 93

Bibliographical Notes 100

Exercises 100

A.Symmetric Bilinear Maps 100

B.Quadrics 102

C.Applications of Porteous'Formula 104

D.Chern Numbers of Kernel Bundles 105

CHAPTER Ⅲ Introduction to Special Divisors 107

1.Clifford's Theorem and the General Position Theorem 107

2.Castelnuovo's Bound,Noether's Theorem,and Extremal Curves 113

3.The Enriques-Babbage Theorem and Petri's Analysis of the Canonical Ideal 123

Bibliographical Notes 135

Exercises 136

A.Symmetric Products of P1 136

B.Refinements of Clifford's Theorem 137

C.Complete Intersections 138

D.Projective Normality(Ⅰ) 140

E.Castelnuovo's Bound on k-Normality 141

F.Intersections of Quadrics 142

G.Space Curves of Maximum Genus 143

H.G.Gherardelli's Theorem 147

I.Extremal Curves 147

J.Nearly Castelnuovo Curves 149

K.Castelnuovo's Theorem 151

L.Secant Planes 152

CHAPTER Ⅳ The Varieties of Special Linear Series on a Curve 153

1.The Brill-Noether Matrix and the Variety C? 154

2.The Universal Divisor and the Poincaré Line Bundles 164

3.The Varieties W?(C)and G?(C)Parametrizing Special Linear Series on a Curve 176

4.The Zariski Tangent Spaces to G?(C)and W?(C) 185

5.First Consequences of the Infinitesimal Study of G?(C)and W?(C) 191

Biographical Notes 195

Exercises 196

A.Elementary Exercises on μ0 196

B.An Interesting Identification 197

C.Tangent Spaces to W1(C) 197

D.Mumford's Theorem for g?'s 198

E.Martens-Mumford Theorem for Birational Morphisms 198

F.Linear Series on Some Complete Intersections 199

G.Keem's Theorems 200

CHAPTER Ⅴ The Basic Results of the Brill-Noether Theory 203

Bibliographical Notes 217

Exercises 218

A.W?(C)on a Curve C of Genus 6 218

B.Embeddings of Small Degree 220

C.Projective Normality(Ⅱ) 221

D.The Difference Map φd:Cd×Cd→J(C)(I) 223

CHAPTER Ⅵ The Geometric Theory of Riemann's Theta Function 225

1.The Riemann Singularity Theorem 225

2.Kempf's Generalization of the Riemann Singularity Theorem 239

3.The Torelli Theorem 245

4.The Theory of Andreotti and Mayer 249

Bibliographical Notes 261

Exercises 262

A.The Difference Map φd(Ⅱ) 262

B.Refined Torelli Theorems 263

C.Translates of Wθ-1,Their Intersections,and the Torelli Theorem 265

D.Prill's Problem 268

E.Another Proof of the Torelli Theorem 268

F.Curves of Genus 5 270

G.Accola's Theorem 275

H.The Difference Map φd(Ⅲ) 276

I.Geometry of the Abelian Sum Map u in Low Genera 278

APPENDIX B Theta Characteristics 281

1.Norm Maps 281

2.The Weil Pairing 282

3.Theta Characteristics 287

4.Quadratic Forms Over Z/2 292

APPENDIX C Prym Varieties 295

Exercises 303

CHAPTER ⅦThe Existence and Connectedness Theorems for W?(C) 304

1.Ample Vector Bundles 304

2.The Existence Theorem 308

3.The Connectedness Theorem 311

4.The Class of W?(C) 316

5.The Class of C? 321

Bibliographical Notes 326

Exercises 326

A.The Connectedness Theorem 326

B.Analytic Cohomology of Cd,d≤2g-2 328

C.Excess Linear Series 329

CHAPTER Ⅷ Enumerative Geometry of Curves 330

1.The Grothendieck-Riemann-Roch Formula 330

2.Three Applications of the Grothendieck-Riemann-Roch Formula 333

3.The Secant Plane Formula:Special Cases 340

4.The General Secant Plane Formula 345

5.Diagonals in the Symmetric Product 358

Bibliographical Notes 364

Exercises 364

A.Secant Planes to Canonical Curves 364

B.Weierstrass Pairs 365

C.Miscellany 366

D.Push-Pull Formulas for Symmetric Products 367

E.Reducibility of Wg-1 ⌒(Wg-1+u)(Ⅱ) 370

F.Every Curve Has a Base-Point-Free g?-1 372

Bibliography 375

Index 383

精品推荐