图书介绍

数学奥林匹克英文版系列 数学奥林匹克在中国pdf电子书版本下载

数学奥林匹克英文版系列  数学奥林匹克在中国
  • 刘培杰主编;欧阳维诚,叶思源,冯海晴副主编 著
  • 出版社: 哈尔滨:哈尔滨工业大学出版社
  • ISBN:7560346854
  • 出版时间:2014
  • 标注页数:396页
  • 文件大小:43MB
  • 文件页数:415页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

数学奥林匹克英文版系列 数学奥林匹克在中国PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Mathematical Olympiad in China 1

1.1 International Mathematical Olympiad(IMO)and China Mathematical Contest—Written before the 31st IMO 1

1.1.1 A Brief Introduction to IMO 2

1.1.2 A Historic Review of China Mathematical Contest 4

1.1.3 Activities of China in the IMO and the 31st IMO 6

Chapter 2 Olympiad's Mathematics 8

2.1 The Application of Projective Geometry Methods to Problem Proving in Geometry 8

2.1.1 A Few Concepts in Projective Geometry 10

2.1.2 Some Examples 15

2.1.3 Exercises 22

2.2 A Conjecture Concerning Six Points in a Square 24

2.3 Modulo-Period Sequence of Numbers 33

2.3.1 Basic Concepts 33

2.3.2 Pure Modulo-period Sequence 39

2.3.3 The Periodicity of Sum Sequence 44

2.3.4 The Relation between the Period and the Initial Terms 47

2.4 Iteration of Fractional Linear Function and Consturction of a Class of Function Equation 49

2.5 Remarks Initiating from a Putnam Mathematics Competition Problem 55

2.5.1 Introductory Remarks 55

2.5.2 The Proof of the Problem 56

2.5.3 Reinforcing the Promble 57

2.5.4 Application 60

2.5.5 Mutually Supplementary Sequences and Reversible Sequences 64

2.6 The Ways of Finding the Best Choise Point 67

2.6.1 The Congruent Transformation of Figures 67

2.6.2 Similarity Transformation of Figures 69

2.6.3 Partial Adjusting Method 70

2.6.4 The Contour Line Method 73

2.6.5 Algebraic Method 75

2.6.6 Trigonometrical Method 77

2.6.7 Analytic Method 78

2.6.8 Solution by Fermat Point Theorem 79

2.6.9 The Area Method 80

2.6.10 Physical Method 81

2.7 The Formulas and Inequalities for the Volumes of n-Simplex 84

2.8 The Polynomial of Inverse Root and Its Transformation 100

2.8.1 The Extension of an IMO Problem 100

2.8.2 The Inverse Root Polynomial 102

2.8.3 Trigonometric Formula of Recurrence Type 105

2.8.4 Inverse Root Polynomial Transformation 108

Chapter 3 Suggestions and Answers of Problems 116

3.1 Remarks on Proposing Problems for Mathematics Competition 116

3.2 A Problem of IMO and a Useful Polynomial 131

3.2.1 Introduction 131

3.2.2 The Proof of the Problem 132

3.2.3 Some Properties of Fm(x) 135

3.2.4 Fm(x)and Some IMO Problems 138

3.2.5 An Existence Problem 142

3.3 Preliminary Approach to Methods of Proposing Mathematics Competition Problems 144

3.3.1 Introduction 145

3.3.2 Form Changing 148

3.3.3 Generalization 151

3.3.4 Construction 156

Chapter 4 Comment on the Exam Paper of Mathematical Olympiad Winter Camp in China 159

4.1 Comment on the Exam Paper of the First Mathematical Winter Camp(1986) 159

4.2 Comment on the Exam Paper of the Second Mathematical Winter Camp(1987) 172

4.3 Comment on the Exam Paper of the Third Mathematical Winter Camp(1988) 178

4.4 Comment on the Exam Paper of the Fourth Mathematical Winter Camp(1989) 183

4.5 Comment on the Exam Paper of the Fifth Mathematical Winter Camp(1990) 192

Chapter 5 China Mathematical Olympiad from the First to the Lastest 205

5.1 China Mathematical Olympiad(1991) 205

5.2 China Mathematical Olympiad(1992) 212

5.3 China Mathematical Olympiad(1993) 220

5.4 China Mathematical Olympiad(1994) 225

5.5 China Mathematical Olympiad(1995) 235

5.6 China Mathematical Olympiad(1996) 241

5.7 China Mathematical Olympiad(1997) 247

5.8 China Mathematical Olympiad(1998) 258

5.9 China Mathematical Olympiad(1999) 265

5.10 China Mathematical Olympiad(2000) 275

5.11 China Mathematical Olympiad(2001) 282

5.12 China Mathematical Olympiad(2002) 293

5.13 China Mathematical Olympiad(2003) 304

5.14 China Mathematical Olympiad(2004) 316

5.15 China Mathematical Olympiad(2005) 323

5.16 China Mathematical Olympiad(2006) 333

5.17 China Mathematical Olympiad(2007) 342

5.18 China Mathematical Olympiad(2008) 351

5.19 China Mathematical Olympiad(2009) 360

5.20 China Mathematical Olympiad(2010) 369

5.21 China Mathematical Olympiad(2011) 375

5.22 China Mathematical Olympiad(2012) 381

5.23 China Mathematical Olympiad(2013) 388

精品推荐