图书介绍
数学经典教材 影印版pdf电子书版本下载
- (美)斯廷罗德(Steenrod,N.)著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510029561
- 出版时间:2011
- 标注页数:229页
- 文件大小:57MB
- 文件页数:240页
- 主题词:纤维丛-拓扑-英文
PDF下载
下载说明
数学经典教材 影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ.THE GENERAL THEORY OF BUNDLES 3
1.Introduction 3
2.Coordinate bundles and fibre bundles 6
3.Construction of a bundle from coordinate transformations 14
4.The product bundle 16
5.The Ehresmann-Feldbau definition of bundle 18
6.Differentiable manifolds and tensor bundles 20
7.Factor spaces of groups 28
8.The principal bundle and the principal map 35
9.Associated bundles and relative bundles 43
10.The induced bundle 47
11.Homotopies of maps of bundles 49
12.Construction of cross-sections 54
13.Bundles having a totally disconnected group 59
14.Covering spaces 67
Part Ⅱ.THE HOMOTOPY THEORY OF BUNDLES 72
15.Homotopy groups 72
16.The operations of π1 on πn 83
17.The homotopy sequence of a bundle 90
18.The classification of bundles over the n-sphere 96
19.Universal bundles and the classification theorem 100
20.The fibering of spheres by spheres 105
21.The homotopy groups of spheres 110
22.Homotopy groups of the or thogonal groups 114
23.A characteristic map for the bundle Rn+1 over Sn 118
24.A characteristic map for the bundle Un over S2n-1 124
25.The homotopy groups of miscellaneous manifolds 131
26.Sphere bundles over spheres 134
27.The tangent bundle of Sn 140
28.On the non-existence of fiberings of spheres by spheres 144
Part Ⅲ.THE COHOMOLOGY THEORY OF BUNDLES 148
29.The stepwise extension of a cross-section 148
30.Bundles of coefficients 151
31.Cohomology groups based on a bundle of coefficients 155
32.The obstruction cocycle 166
33.The difference cochain 169
34.Extension and deformation theorems 174
35.The primary obstruction and the characteristic cohomology class 177
36.The primary difference of two cross-sections 181
37.Extensions of functions,and the homotopy classification of maps 184
38.The Whitney characteristic classes of a sphere bundle 190
39.The Stiefel characteristic classes of differentiable manifolds 199
40.Quadratic forms on manifolds 204
41.Complex analytic manifolds and exterior forms of degree 2 209
Appendix 218
Bibliography 223
Index 228