图书介绍

Python数据分析基础pdf电子书版本下载

Python数据分析基础
  • Clinton W.Brownley著 著
  • 出版社: 南京:东南大学出版社
  • ISBN:9787564170004
  • 出版时间:2017
  • 标注页数:326页
  • 文件大小:43MB
  • 文件页数:348页
  • 主题词:软件工具-程序设计-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Python数据分析基础PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.PythonBasics 1

How to Create a Python Script 1

Howto Run a Python Script 4

Useful Tips for Interacting with the Command Line 7

Python's Basic Building Blocks 11

Numbers 12

Strings 14

Regular Expressions and Pattern Matching 19

Dates 22

Lists 25

Tuples 31

Dictionaries 32

Control Flow 37

Reading a Text File 44

Create a Text File 44

Script and Input File in Same Location 47

Modem File-Reading Syntax 47

Reading Multiple Text Files with glob 48

Create Another Text File 49

Writingto a Text File 52

Add Code to first_script.Py 53

Writing to a Comma-Separated Values(CSV)File 55

print Statements 57

Chapter Exercises 58

2.Comma-SeparatedValues(CSV)Files 59

Base Python Versus pandas 61

Read andWrite a CSV File(Part 1) 62

How Basic String Parsing Can Fail 69

Read and Write a CSV File(Part 2) 70

Filter for Specific Rows 72

Value in Row Meets a Condition 73

Value in Row Is in a Set of Interest 75

Value in Row Matches a Pattern/Regular Expression 77

Select Specific Columns 79

Column Index Values 79

Column Headings 81

Select Contiguous Rows 83

Add a Header Row 86

Reading Multiple CSV Files 88

Count Number of Files and Number of Rows and Columns in Each File 90

Concatenate Data from Multiple Files 93

Sum and Average a Set ofValues per File 97

Chapter Exercises 100

3.Excel Files 101

Introspecting an Excel Workbook 104

Processing a Single Worksheet 109

Read and Write an Excel File 109

Filter for Specific Rows 113

Select Specific Columns 120

Reading All Worksheets in a Wbrkbook 124

Filter for Specific Rows Across All Worksheets 124

Select Specific Columns Across All Worksheets 127

Reading a Set of Worksheets in an Excel Workbook 129

Filter for Specific Rows Across a Set of Worksheets 129

Processing Multiple Workbooks 132

Count Number of Workbooks and Rows and Columns in Each Workbook 134

Concatenate Data from Multiple Workbooks 136

Sum and Average Values per Workbook and Worksheet 138

Chapter Exercises 142

4.Databases 143

Python's Built-in sqlite3 Module 145

Insert New Records into a Table 151

Update Records in a Table 156

MySQL Database 160

Insert New Records into a Table 165

Query a Table and Write Output to a CSV File 170

Update Records in a Table 172

Chapter Exercises 177

5.Applications 179

Find a Set of Items in a Large Collection of Files 179

Calculate a Statistic for Any Number of Categories from Data in a CSV File 192

Calculate Statistics for Any Number of Categories from Data in a Text File 204

Chapter Exercises 213

6.Figures and Plots 215

matplotlib 215

Bar Plot 216

Histogram 218

Line Plot 220

Scatter Plot 222

Box Plot 224

pandas 226

ggplot 228

seaborn 231

7.Descriptive Statistics and Modeling 239

Datasets 239

Wine Quality 239

Customer Churn 240

Wine Quality 241

Descriptive Statistics 241

Grouping,Histograms,and t-tests 243

Pairwise Relationships and Correlation 244

Linear Regression with Least-Squares Estimation 247

Interpreting Coefficients 249

Standardizing Independent Variables 249

Making Predictions 251

Customer Churn 252

Logistic Regression 255

Interpreting Coefficients 257

Making Predictions 259

8.Scheduling Scripts to Run Automatically 261

Task Scheduler(Windows) 261

The cron Utility(macOS and Unix) 270

Crontab File:One-Time Set-up 271

Adding Cron Jobs to the Crontab File 273

9.Where to Go from Here 277

Additional Standard Library Modules and Built-in Functions 278

Python Standard Library(PSL):A Few More Standard Modules 278

Built-in Functions 279

Python Package Index(PyPI):Additional Add-in Modules 280

NumPy 280

SciPy 286

Scikit-Learn 290

A Few Additional Add-in Packages 292

Additional Data Structures 293

Stacks 293

Queues 294

Graphs 294

Trees 295

Where to Go from Here 295

A.Download Instructions 299

B.Answers to Exercises 311

Bibliography 313

Index 315

精品推荐