图书介绍

Power Query 基于Excel和Power BI的M函数详解及应用pdf电子书版本下载

Power Query  基于Excel和Power BI的M函数详解及应用
  • 李小涛著 著
  • 出版社: 北京:电子工业出版社
  • ISBN:9787121350733
  • 出版时间:2018
  • 标注页数:220页
  • 文件大小:28MB
  • 文件页数:233页
  • 主题词:表处理软件

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

Power Query 基于Excel和Power BI的M函数详解及应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 Power Query的庐山真面目 1

1.1初识Power Query 1

1.2“新建查询”命令 2

1.3“查询编辑器”界面介绍 3

1.4在“查询编辑器”内导入数据 8

1.5用“从表格”命令导入多张数据表 9

1.6将查询表上载至Excel 11

1.7刷新数据 13

第2章 Power Query的基础操作 15

2.1添加自定义列 15

2.2“追加查询”功能 17

2.2.1“追加查询”功能详解 17

2.2.2“追加查询”案例——汇总4张工作表 21

2.2.3“追加查询”案例——文件夹汇总 24

2.3“合并查询”功能 31

2.3.1“合并查询”功能详解 32

2.3.2“合并查询”案例——单条件匹配 35

2.3.3“合并查询”案例——多条件匹配 37

2.3.4“合并查询”案例——一对多查询 39

2.3.5“合并查询”案例——对比两列数据的差异 41

2.4“透视列”与“逆透视列”功能 43

2.4.1数据的维度 43

2.4.2“透视列”案例——将一维表转换为二维表 44

2.4.3“透视列”案例——文本透视 45

2.4.4“逆透视列”功能详解 46

2.4.5“逆透视列”案例——将二维表转换为一维表 46

2.5“分组依据”功能 47

2.5.1“分组依据”功能详解 47

2.5.2“分组依据”案例 48

第3章 M函数入门 51

3.1Power Query的三大容器 51

3.1.1List(列表) 51

3.1.2List扩展 53

3.1.3List类函数 54

3.1.4List合并 57

3.1.5Record(记录) 58

3.1.6Record扩展 59

3.1.7Record类函数 60

3.1.8Record合并 60

3.1.9Table(表) 62

3.1.10Table扩展 64

3.1.11Table类函数 64

3.1.12Table合并 67

3.2深化容器中的元素 68

3.2.1深化list元素 68

3.2.2深化record元素 69

3.2.3深化table元素 70

3.2.4深化多层容器 73

3.3数据类型 73

3.3.1自动检测数据 74

3.3.2数据类型设置 75

3.4M函数介绍 77

3.4.1M函数的类别 77

3.4.2Text类函数 79

3.4.3Number类函数 80

3.4.4Time类函数 82

3.4.5Date类函数 82

3.4.6DateTime类函数 84

3.5学习M函数的方法 85

3.5.1查看指定函数 85

3.5.2读懂函数的参数 87

第4章 Power Query中的重要概念 89

4.1分支语句 89

4.1.1条件语句:if…then…else 89

4.1.2调用“条件列” 92

4.1.3容错语句:try…otherwise 95

4.2打开M函数的钥匙——“上下文” 97

4.2.1Table.AddColumn:表添加列 98

4.2.2Table.SelectRows:对表进行筛选 99

4.2.3Table.Distinct:对表删除重复项 102

4.2.4Table.RowCount/Table.ColumnCount:计算表行/列数 104

4.2.5Power Query中的“上下文” 104

4.2.6自定义参数 106

4.2.7实战案例1——国际排名 109

4.2.8实战案例2——中国式排名 111

4.2.9实战案例3——中国式班级排名 114

4.2.10实战案例4——筛选家庭成员信息 115

第5章 Power Query实战 118

5.1M函数的初阶运用 118

5.1.1List.Sum:列表求和 118

5.1.2List.Max/List.Min:返回列表中的最大/小值 119

5.1.3Number.From:数字转换 122

5.1.4Table.Group:分组统计 124

5.1.5实战案例1——计算连续正负数的个数并求和 132

5.1.6Table.Max/Table.Min:筛选表中最大值/最小值的行 135

5.1.7实战案例2——筛选最近一次的记录 136

5.1.8实战案例3——计算每人连续迟到的最大次数 139

5.1.9Table.Skip:跳过表前几行 143

5.1.10Text.Start/Text.End:从左取值/从右取值 146

5.1.11Text.Combine:文本合并 148

5.1.12实战案例4——合并同部门的姓名 150

5.1.13实战案例5——将单词和翻译分列显示 151

5.1.14Text.From:文本转换 153

5.1.15List.Transform:遍历列表 154

5.1.16实战案例6——文件夹汇总 156

5.2M函数的进阶运用 158

5.2.1Text.Split:文本分割 158

5.2.2Date.FromText:日期来自文本 160

5.2.3Date.ToText:日期转到文本 161

5.2.4List.RemoveNulls:删除列表中的null值 162

5.2.5实战案例7——在数据中提取日期 163

5.2.6实战案例8——求数据中的金额总和 166

5.2.7List.PositionOf:在列表中查找索引值 171

5.2.8Record.ToList/Record.FieldValues:返回记录中的值 174

5.2.9Table.ColumnNames:返回表的列标题 175

5.2.10实战案例9——返回满足条件的所有区间 176

5.2.11Number.RoundDown:向下舍入 179

5.2.12List.Range:取列表中的值 180

5.2.13Table.FromColumns:表来自列 180

5.2.14实战案例10——单列转多列 182

5.3M函数的高阶运用 185

5.3.1Table.ToColumns:按列转换表 185

5.3.2Table.ToRows:按行转换表 186

5.3.3Table.FromRows:表来自行 187

5.3.4实战案例11——添加汇总行和汇总列 189

5.3.5List.Zip:列表压缩 192

5.3.6实战案例12——计算每个学生获得第一名的次数 193

5.3.7Number.Sign:数字符号 197

5.3.8Text.Contains:判断字符串中是否包含某值 198

5.3.9实战案例13——判断服装是齐码还是断码 200

5.3.10实战案例14——将多列数据转换成两列数据 203

5.3.11实战案例15——取特定位置的值 207

5.3.12List.Select:筛选列表 209

5.3.13实战案例16——取包含特定值的信息 211

5.3.14List.TransformMany:笛卡儿组合函数 213

5.3.15实战案例17——制作工资条 218

精品推荐