图书介绍

新概念学材系列新概念 数学 初中 第1册pdf电子书版本下载

新概念学材系列新概念  数学  初中  第1册
  • 素质教育与能力培训研究组编 著
  • 出版社: 北京:中国人民大学出版社
  • ISBN:7300037976
  • 出版时间:2001
  • 标注页数:177页
  • 文件大小:7MB
  • 文件页数:185页
  • 主题词:中考系列

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

新概念学材系列新概念 数学 初中 第1册PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

代数 3

第一章 认识有理数 3

第一节 引言 3

一、数的来历 3

二、有理数的概念 4

第二节 关于数轴 6

一、做数轴 6

二、数轴、相反数和绝对值 7

第三节 有理数的运算 10

一、加法 10

二、减法 13

三、乘法 15

四、除法 19

五、乘方 20

六、混合运算 22

七、关于平方表和立方表 22

第四节 数学思想回顾 24

一、数学是什么 24

二、知其然且知其所以然 25

三、最简单的方法是最好的 25

第二章 认识整式 26

第一节 引言 26

第二节 列代数式和代数式求值 28

第三节 整式的概念 30

一、合并同类项 32

第四节 整式的加减 32

二、去括号和添括号 34

第五节 整式的乘法 37

一、同底数幂的乘法 37

二、幂的乘方与积的乘方 38

三、单项式乘法 40

四、多项式乘法 41

第六节 乘法公式 43

第七节 整式的除法 46

一、同底数的幂的除法 46

二、单项式除以单项式 48

三、多项式除以单项式 49

第八节 数学思想回顾 50

四、多项式除以多项式 50

一、循序渐进,逐步扩充的思想 51

二、整体性的思想 51

三、分解复杂问题的思想 51

四、转化和统一的思想 52

第三章 一元一次方程 53

第一节 引言 53

第二节 等式和方程 53

第三节 一元一次方程的解法 56

一、一元一次方程的解法 56

二、关于一元一次方解的讨论 59

第四节 一元一次方程的应用 63

第五节 数学思想回顾 73

第四章 二元一次方程组 75

第一节 引言 75

第二节 二元一次方程组的定义 75

第三节 二元一次方程组的解法 77

一、代入消元法 77

二、加减消元法 78

第四节 三元一次方程组的解法 80

第五节 二元一次方程组的解的讨论 82

第六节 不定方程 85

一、一次方程组的常用解法 87

第七节 一次方程组的应用 87

二、一次方程组的又一种解法 90

第八节 数学思想回顾 97

第五章 一元一次不等式和一元一次不等式组 99

第一节 引言 99

第二节 不等式的意义 100

第三节 不等式的性质 101

第四节 不等式的解和解集 103

第五节 解不等式 105

第六节 不等式的应用 109

第七节 一元一次不等式组的定义 110

第八节 一元一次不等式组的解和解集 111

第九节 一元一次不等式组的解法 113

第十节 一元一次不等式组的整数解 118

第十一节 数学思想回顾 120

几何 123

引言 123

第一章 线段、角 133

第一节 直线、射线、线段 133

一、直线 133

二、射线、线段 134

三、线段的比较和画法 136

第二节 角 140

一、角 140

二、角的比较 141

三、角的度量 144

四、角的画法 147

第二章 相交线、平行线 153

第一节 相交线和对顶角 153

第二节 垂线 155

第三节 同位角、内错角、同旁内角 158

第四节 平行线 161

一、平行线及平行公理 161

二、平行线的判定 163

三、平行线的性质 166

第五节 命题、定理、证明 168

一、命题 168

二、定理与证明 171

精品推荐