图书介绍
社交网络上的计算传播学pdf电子书版本下载
- 许小可等编著 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040430691
- 出版时间:2015
- 标注页数:304页
- 文件大小:31MB
- 文件页数:323页
- 主题词:互联网络-传播学-研究
PDF下载
下载说明
社交网络上的计算传播学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 引论 1
1.1社交网络分析:从大众传播到人际传播的必然选择 2
1.2网络科学领域的结构主义倾向 2
1.3计算传播学简介 3
1.4基于计算传播学的信息传播过程可计算框架 4
1.5本书内容简介 5
第2章 单条信息传播的多维度测量 7
2.1引言 8
2.2扩散规模及扩散率 9
2.3扩散网络 9
2.3.1高度和宽度 10
2.3.2级联率 11
2.4扩散阈值 13
2.5扩散时间 17
2.5.1速度 19
2.5.2爆发与持续性 20
2.6扩散空间 24
2.7本章小结和展望 26
参考文献 26
第3章 影响信息传播的可计算因素分析 29
3.1引言 30
3.2社交网络结构特征对传播的影响 30
3.2.1网络连通性 31
3.2.2度相关性 32
3.2.3空间结构 33
3.2.4 Hub节点 34
3.2.5小世界特性 35
3.2.6信息传播对于社交网络结构演化的反作用 36
3.3信息属性的影响 39
3.4用户属性以及属性相似性的影响 41
3.4.1用户自身属性 41
3.4.2好友属性的趋同性 44
3.4.3好友间的同伴作用 45
3.5用户阵发活动模式的影响 47
3.6本章小结与展望 49
参考文献 50
第4章 节点传播能力的测量 55
4.1引言 56
4.2社交网络中的意见领袖 56
4.2.1意见领袖与二级传播理论 56
4.2.2意见领袖成因分析 57
4.3基于网络结构的节点传播能力测量 59
4.3.1节点连接度 60
4.3.2结构洞特征 60
4.3.3 PageRank算法 61
4.3.4 LeaderRank算法 62
4.3.5 κ-核分解算法 63
4.4基于信息传播的节点传播能力测量 65
4.4.1有效用户数量 65
4.4.2被转发次数与被提及次数 66
4.4.3 TunkRank排序算法 67
4.4.4明星指数 68
4.5影响最大化问题 68
4.6本章小结与展望 71
参考文献 72
第5章 信息扩散模型 79
5.1引言 80
5.2经典的信息扩散模型 81
5.2.1创新扩散模型 81
5.2.2局部相互作用博弈模型 84
5.2.3阈值模型 85
5.2.4级联模型 86
5.2.5 Markov随机场图模型 87
5.2.6传染病模型 87
5.3数据驱动的信息扩散模型 88
5.3.1分支过程模型 88
5.3.2数据驱动的级联模型 92
5.3.3基于信息亲和性的模型 93
5.3.4基于信息扩散升降模式的模型 95
5.3.5基于外部影响的模型 96
5.3.6基于权威节点影响的模型 97
5.3.7其他数据驱动模型 98
5.4信息扩散模型的最新进展 99
5.4.1谣言传播模型 99
5.4.2竞争性的信息扩散模型 101
5.4.3其他模型 104
5.5本章小结与展望 105
参考文献 106
第6章 计算传播学在新闻和公共舆论领域的应用 111
6.1引言 112
6.2传播者研究 114
6.2.1新闻传播中传播者研究的现状 114
6.2.2公众参与公共舆论传播的不平等性 115
6.3受众研究 116
6.4内容研究 118
6.5渠道研究 121
6.6效果研究 122
6.6.1公共舆论与受众的认知、态度及行为改变 122
6.6.2公共舆论的宏观效果 123
6.6.3在线公共舆论与社会运动 124
6.6.4社会化计算与在线公共舆论效果研究 127
6.7本章小结与展望 128
参考文献 130
第7章 计算传播学在电子商务中的应用 135
7.1引言 136
7.2消费者参与口碑传播的心理动机 137
7.3消费者参与口碑传播的行为分析 138
7.3.1用户评分的统计特征 138
7.3.2用户评分的时间特征 139
7.4用户评论内容的文本分析 140
7.4.1用户评论质量的判定 141
7.4.2用户评论的语义分析 141
7.4.3用户评论的情感倾向分析 143
7.5口碑营销的效果测量 144
7.5.1口碑营销的信息传播效果 144
7.5.2口碑营销中信息传播的影响因素 145
7.5.3口碑传播对品牌认知的影响 147
7.5.4口碑传播对购买行为的影响 148
7.6广告受众的精准定向 149
7.6.1基于用户行为的受众定向 150
7.6.2基于社会关系的受众定向 151
7.6.3基于用户自创内容的受众定向 152
7.7本章小结与展望 154
参考文献 156
第8章 行为、情绪和感受的计算传播学 163
8.1引言 164
8.2行为的计算传播学研究 165
8.2.1恶性行为的传播 165
8.2.2合作行为的传播 167
8.2.3导致肥胖的行为传播 168
8.2.4吸烟行为的传播 171
8.2.5饮酒行为的传播 174
8.2.6睡眠行为的传播 177
8.3情绪和感受的计算传播学研究 179
8.3.1幸福感的传播 179
8.3.2孤独感的传播 183
8.3.3抑郁的传播 185
8.3.4不同极性情绪的传播特性差异 188
8.3.5情绪传播研究中的学术道德 189
8.4影响行为、情绪和感受传播的因素分析 191
8.4.1网络结构的影响 191
8.4.2趋同性的影响 193
8.5社会影响、趋同性与共因原理 196
8.6本章小结与展望 198
参考文献 199
第9章 社交网络的抽样策略及在计算传播学中的应用 209
9.1在线社交网络的常用抽样策略 210
9.1.1随机抽样 210
9.1.2广度优先搜索抽样 212
9.1.3滚雪球抽样 212
9.1.4森林火灾抽样 213
9.1.5随机行走抽样 214
9.1.6 Metropolis-Hastings随机行走抽样 215
9.1.7有偏随机行走抽样 216
9.1.8融合随机抽样和依存式抽样的混合抽样 216
9.2评估和比较各种抽样策略的性能 217
9.2.1常用统计量 217
9.2.2常用统计方法 218
9.2.3性能比较 219
9.3其他类型社交网络中的抽样策略 221
9.3.1有向社交网络的抽样 221
9.3.2具有强社团结构网络的抽样 222
9.4局部大数据的分析与应用 222
9.4.1局部大数据与随机样本数据的区别 222
9.4.2局部数据中边界效应的影响 223
9.5信息传播研究中的抽样策略 226
9.5.1衡量信息传播抽样效果的统计量 226
9.5.2基于网络拓扑结构的抽样 227
9.5.3基于信息传播特性的抽样策略 227
9.5.4融合信息传播特性和拓扑结构的抽样 228
9.5.5信息源确定与信息传播路径重构 229
9.6本章小结与展望 231
参考文献 232
第10章 基于置乱算法的社交网络零模型构造及应用 237
10.1引言 238
10.2静态无权网络零模型的构造 239
10.2.1基于网络模型构造零模型的局限性 240
10.2.2基于随机断边重连的1阶零模型 240
10.2.3强同配特性或异配特性的断边重连零模型 242
10.2.4基于随机断边重连的2阶零模型 243
10.2.5局部断边重连算法 244
10.3静态加权网络零模型的构造 246
10.3.1权重置乱算法 246
10.3.2等权重置乱算法 247
10.3.3局部权重置乱算法 248
10.4时变网络零模型的构造 249
10.4.1时变网络简介 250
10.4.2连边置乱算法 251
10.4.3时间置乱算法 251
10.4.4时间随机化算法 253
10.4.5时权置乱算法 254
10.4.6等权置乱算法 255
10.4.7接触置乱算法 256
10.4.8时间倒转算法 257
10.4.9叠加算法 258
10.4.10区间图上的置乱算法 259
10.5双层网络上的节点置乱零模型 261
10.6本章小结与展望 264
参考文献 265
第11章 基于Python语言的计算传播学定量分析入门 273
11.1 Python语言简介 274
11.2数据抓取 274
11.2.1直接抓取数据 275
11.2.2模拟浏览器抓取数据 276
11.2.3基于API接口抓取数据 278
11.3数据预处理 285
11.4可视化 289
11.5数据分析 292
11.5.1节点属性 292
11.5.2网络属性 296
11.5.3传播属性 298
11.6本章小结 303
参考文献 304