图书介绍

线性代数pdf电子书版本下载

线性代数
  • 同济大学数学系编著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:730214317X
  • 出版时间:2007
  • 标注页数:209页
  • 文件大小:6MB
  • 文件页数:218页
  • 主题词:线性代数-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

线性代数PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 矩阵代数 1

1.1 矩阵及其运算 1

1.矩阵的定义 1

2.矩阵的相等 3

3.矩阵的加法 4

4.矩阵的数量乘法 4

5.矩阵的乘法 5

6.矩阵乘法的应用 7

7.矩阵的转置 10

8.Matlab关于数的计算 11

9.Matlab关于矩阵的运算 13

习题1.1 15

1.2 矩阵的分块 17

1.矩阵的分块 18

2.分块矩阵的运算 18

习题1.2 21

1.3 矩阵的初等变换和初等方阵 23

1.矩阵的初等变换 24

2.矩阵的等价 25

3.阶梯形矩阵 25

4.线性方程组求解(高斯消元法) 26

5.初等方阵 29

习题1.3 31

1.4 可逆方阵 32

1.逆矩阵的定义 32

2.可逆方阵的性质 33

3.逆矩阵存在的条件 33

4.A-1的计算 35

5.矩阵方程 37

6.用Matlab求逆矩阵和解矩阵方程 38

习题1.4 40

第2章 方阵的行列式 42

2.1 n阶行列式的定义 42

1.方阵的子阵 42

2.n阶方阵的行列式的定义 42

3.二阶行列式 43

4.三阶行列式 43

5.三角方阵的行列式 44

习题2.1 46

2.2 行列式的行初等变换与行展开式 46

1.第Ⅰ类行初等变换 46

2.行列式按行展开 47

3.第Ⅱ类行初等变换 49

4.第Ⅲ类行初等变换 50

习题2.2 52

2.3 行列式的性质 53

1.方阵乘积的行列式 53

2.转置方阵的行列式 54

3.行列式的列初等变换 54

习题2.3 57

2.4 克拉默法则 59

1.方阵的伴随方阵 59

2.克拉默法则 60

习题2.4 62

第3章 矩阵的秩与线性方程组 64

3.1 向量组及其线性组合 64

1.向量的定义与初等性质 64

2.向量组的线性组合 65

3.向量空间 67

习题3.1 69

3.2 向量组的线性相关性 71

1.向量组线性相关与线性无关的定义 71

2.向量组线性相关与线性无关的判别定理 74

习题3.2 77

3.3 向量组的秩 80

1.向量组的等价 80

2.关于向量组及其等价的一些结论 82

3.向量组的秩 83

4.向量空间的基与维数 85

习题3.3 86

3.4 矩阵的秩 88

1.矩阵的行秩与列秩 88

2.矩阵的秩 90

3.矩阵乘积的秩 95

4.用Matlab求向量组的秩 95

习题3.4 96

3.5 线性方程组解的结构 99

1.线性方程组有解的条件 99

2.齐次线性方程组的解的结构 101

3.非齐次线性方程组的解的结构 105

4.用Matlab解线性方程组 108

习题3.5 109

第4章 线性空间 113

4.1 线性空间与子空间 113

1.线性空间的定义 113

2.线性空间的简单性质 114

3.子空间 116

习题4.1 116

4.2 基变换与坐标变换 117

1.线性空间的基与维数 117

2.向量在一个基下的坐标 118

3.基变换公式 120

4.坐标变换公式 122

习题4.2 125

4.3 线性空间的同构 126

1.线性空间同构的定义 126

2.同构映射的性质 127

习题4.3 128

4.4 线性变换及其矩阵表示式 128

1.线性变换的定义与例子 128

2.线性变换的性质 129

3.线性变换的矩阵 132

习题4.4 134

第5章 向量的内积,二次型 137

5.1 内积,长度,正交性 137

1.向量的内积 137

2.向量的长度 138

3.两个向量的夹角,正交的向量 139

4.正交向量组 140

5.规范正交基 141

6.施密特(Schmidt)正交化过程 142

7.正交阵 143

习题5.1 146

5.2 方阵的特征值与特征向量,相似方阵 147

1.方阵的特征值与特征向量 147

2.特征值的性质 147

3.相似方阵 151

4.方阵的对角化 152

5.代数重数与几何重数 153

6.应用:预测商品销售的趋势 153

7.用Matlab计算方阵的特征值与特征向量 155

习题5.2 157

5.3 与实对称阵正交相似的标准形 158

1.实对称阵的特征值和特征向量 158

2.实对称阵正交相似于实对角阵 160

习题5.3 164

5.4 化二次型为标准形 165

1.实二次型 165

2.二次型的标准形 167

3.实对称阵的合同 168

4.配方法 170

5.实二次型的规范形,惯性定理 174

6.用Matlab把实二次型化简为标准形 175

习题5.4 176

5.5 正定二次型与正定阵 178

1.正定二次型 178

2.顺序主子式 178

3.实二次型正定的等价条件 179

4.应用 183

习题5.5 184

习题解答 185

参考文献 209

精品推荐