图书介绍

光电子学与光子学的原理及应用 英文版pdf电子书版本下载

光电子学与光子学的原理及应用  英文版
  • (英)S.O.Kasap著 著
  • 出版社: 电子工业出版社
  • ISBN:7505385771
  • 出版时间:2003
  • 标注页数:340页
  • 文件大小:106MB
  • 文件页数:40034233页
  • 主题词:光电子学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

光电子学与光子学的原理及应用 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1. WAVE NATURE OF LIGHT 1

1.1 Light Waves in a Homogeneous Medium 1

A. Plane Electromagnetic Wave 1

B. Maxwells Wave Equation and Diverging Waves 4

Example 1.1.1:A diverging laser beam 7

1.2 Refractive Index 7

Example 1.2.1: Relative permittivity and refractive index 8

1.3 Group Velocity and Group Index 9

Example 1.3.1: Group velocity 11

Example 1.3.2: Group and phase velocities 11

1.4 Magnetic Field, Irradiance, and Poynting Vector 11

Example 1.4.1: Electric and magnetic fields in light 13

1.5 Snells Law and Total Internal Reection (TIR) 14

1.6 Fresnels Equations 16

A. Amplitude Reection and Transmission Coefficients 16

Example 1.6.1: Evanescent wave 22

B. Intensity, Reectance, and Transmittance 23

Example 1.6.2: Reection of light from a less dense medium 24

Example 1.6.3: Reection at normal incidence. Internal andexternal reection 25

Example 1.6.4: Antireection coatings on solar cells 26

Example 1.6.5: Dielectric mirrors 27

1.7 Multiple Interference and Optical Resonators 28

Example 1.7.1: Resonator modes and spectral width 31

1.8 Goos-Hanchen Shift and Optical Tunneling 32

1.9 Temporal and Spatial Coherence 34

1.10 Diffraction Principles 37

A. Fraunhofer Diffraction 37

Example 1.10.1: Resolving power of imaging systems 41

B. Diffraction grating 42

Questions and Problems 44

2. DIELECTRIC WAVEGUIDES AND OPTICAL FIBERS 50

2.1 Symmetric Planar Dielectric Slab Waveguide 50

A. Waveguide Condition 50

B. Single and Multimode Waveguides 55

C. TE and TM Modes 56

Example 2.1.1: Waveguide modes 57

Example 2.1.2: V-number and the number of modes 58

Example 2.1.3: Mode field distance (MFD) 59

2.2 Modal and Waveguide Dispersion in the Planar Waveguide 60

A. Waveguide Dispersion Diagram 60

B. Intermodal Dispersion 60

C. Intramodal Dispersion 62

2.3 Step Index Fiber 63

Example 2.3.1: A multimode fiber 68

Example 2.3.2: A single mode fiber 68

Example 2.3.3: Single mode cut-off wavelength 68

Example 2.3.4: Group velocity and delay 69

2.4 Numerical Aperture 69

Example 2.4.1: A multimode fiber and total acceptance angle 71

Example 2.4.2: A single mode fiber 71

2.5 Dispersion in Single Mode Fibers 71

A. Material Dispersion 71

B. Waveguide Dispersion 73

C. Chromatic Dispersion or Total Dispersion 74

D. Profile and Polarization Dispersion Effects 75

E. Dispersion Flattened Fibers 76

Example 2.5.1: Material dispersion 77

Example 2.5.2: Material, waveguide, and chromatic dispersion 77

2.6 Bit-Rate, Dispersion, Electrical, and Optical Bandwidth 78

A. Bit-Rate and Dispersion 78

B. Optical and Electrical Bandwidth 81

Example 2.6.1: Bit-rate and dispersion 82

2.7 The Graded Index Optical Fiber 83

Example 2.7.1: Dispersion in a graded-index fiber and bit-rate 85

2.8 Light Absorption and Scattering 87

A. Absorption 87

B. Scattering 88

2.9 Attenuation in Optical Fibers 90

Example 2.9.1: Rayleigh scattering limit 93

Example 2.9.2: Attenuation along an optical ber 94

2.10 Fiber Manufacture 94

A. Fiber Drawing 94

B. Outside Vapor Deposition (OVD) 96

Example 2.10.1: Fiber drawing 98

Questions and Problems 98

3. SEMICONDUCTOR SCIENCE AND LIGHT EMIING DIODES 107

3.1 Semiconductor Concepts and Energy Bands 107

A. Energy Band Diagrams 107

B. Semiconductor Statistics 110

C. Extrinsic Semiconductors 113

D. Compensation Doping 116

E. Degenerate and Nondegenerate Semiconductors 117

F Energy Band Diagrams in an Applied Field 118

Example 3.1.1: Fermi levels in semiconductors 118

Example 3.1.2: Conductivity 119

3.2 Direct and Indirect Bandgap Semiconductors: E-k Diagrams 119

3.3 pn Junction Principles 123

A. Open Circuit 123

B. Forward Bias 126

C. Reverse Bias 131

D. Depletion Layer Capacitance 134

E. Recombination Lifetime 135

Example 3.3.1: A direct band gap pn junction 136

3.4 The pn Junction Band Diagram 137

A. Open Circuit 137

B. Forward and Reverse Bias 138

3.5 Light Emitting Diodes 139

A. Principles 139

B. Device Structures 141

3.6 LED Materials 142

3.7 Heterojunction High Intensity LEDS 144

3.8 LED Characteristics 147

Example 3.8.1: LED output spectrum 149

Example 3.8.2: LED output wavelength variations 149

Example 3.8.3: InGaAsP on InP substrate 150

3.9 LEDs for Optical Fiber Communications 150

Questions and Problems 153

4. STIMULATED EMISSION DEVICES LASERS 159

4.1 Stimulated Emission and Photon Amplification 159

4.2 Stimulated Emission Rate and Einstein Coefficients 162

4.3 Optical Fiber Amplifiers 164

4.4 Gas Laser: The He-Ne Laser 166

Example 4.4.1: Efficiency of the He-Ne laser 169

Example 4.4.2: Laser beam divergence 170

4.5 The Output Spectrum of a Gas Laser 170

Example 4.5.1: Doppler broadened linewidth 173

4.6 LASER Oscillation Conditions 174

A. Optical Gain Coefficient g 174

B. Threshold Gain gth 176

C. Phase Condition and Laser Modes 178

Example 4.6.1: Threshold population inversionfor the He-Ne laser 181

4.7 Principle of the Laser Diode 181

4.8 Heterostructure Laser Diodes 185

Example 4.8.1: Modes in a laser and the optical cavity length 189

4.9 Elementary Laser Diode Characteristics 190

Example 4.9.1: Laser output wavelength variations 192

4.10 Steady State Semiconductor Rate Equation 192

4.11 Light Emitters for Optical Fiber Communications 195

4.12 Single Frequency Solid State Lasers 196

Example 4.12.1: DFB Laser 198

4.13 Quantum Well Devices 199

Example 4.13.1:A GaAs quantum well 202

4.14 Veical Cavity Surface Emitting Lasers (VCSELs) 203

4.15 Optical Laser Amplifiers 205

4.16 Holography 206

Questions and Problems 209

5. PHOTODETECTORS 217

5.1 Principle of the pn Junction Photodiode 217

5.2 Ramos Theorem and External Photocurrent 219

5.3 Absorption Coefficient and Photodiode Materials 221

5.4 Quantum Efficiency and Responsivity 224

5.5 The pin Photodiode 225

Example 5.5.1: Operation and speed of a pin photodiode 228

Example 5.5.2: Photocarrier diffusion in a pin photodiode 228

Example 5.5.3: Responsivity of a pin photodiode 229

5.6 Avalanche Photodiode 230

Example 5.6.1: InGaAs APD Responsivity 234

Example 5.6.2: Silicon APD 234

5.7 Heterojunction Photodiodes 234

A. Separate Absorption and Multiplication (SAM) APD 234

B. Superlattice APDs 2365.8 Phototransistors 237

5.9 Photoconductive Detectors and Photoconductive Gain 239

5.10 Noise In Photodetectors 242

A. The pn Junction and the pin Photodiodes 242

Example 5.10.1: NEP of a Si pin photodiode 244

Example 5.10.2: Noise of an ideal photodetector 244

Example 5.10.3: SNR of a receiver 245

B. Avalanche Noise in the APD 246

Example 5.10.4: Noise in an APD246Questions and Problems 247

6. PHOTOVOLTAIC DEVICES 254

6.1 Solar Energy Spectrum 254

Example 6.1.1: Solar energy conversion 256

6.2 Photovoltaic Device Principles 257

Example 6.2.1: The photocurrent Iph 260

6.3 pn Junction Photovoltaic I-V Characteristics 261

Example 6.3.1:A solar cell driving a resistive load 264

Example 6.3.2: Open circuit voltage and illumination 264

6.4 Series Resistance and Equivalent Circuit 265

Example 6.4.1: Solar cells in parallel 267

6.5 Temperature Effects 268

6.6 Solar Cells Materials, Devices, and Efficiencies 269

Questions and Problems 272

7. POLARIZATION AND MODULATION OF LIGHT 275

7.1 Polarization 275

A. State of Polarization 275

Example 7.1.1: Elliptical and circular polarization 278

B. Maluss Law 279

7.2 Light Propagation in an Anisotropic Medium: Birefringence 280

A. Optical Anisotropy 280

B. Uniaxial Crystals and Fresnels Optical Indicatrix 281

C. Birefringence of Calcite 285

D. Dichroism 286

7.3 Birefringent Optical Devices 287

A. Retarding Plates 287

Example 7.3.1: Quartz half-wave plate 288

Example 7.3.2: Circular polarization from linear polarization 289

B. Soleil-Babinet Compensator 289

C. Birefringent Prisms 291

7.4 Optical Activity and Circular Birefringence 292

7.5 Electro-Optic Effects 294

A. Definitions 294

B. Pockels Effect 295

Example 7.5.1: Pockels Cell Modulator 299

C. Kerr Effect 300

Example 7.5.2: Kerr effect modulator 301

7.6 Integrated Optical Modulators 301

A. Phase and Polarization Modulation 301

B. Mach-Zehnder Modulator 303

C. Coupled Waveguide Modulators 304

Example 7.6.1: Modulated directional coupler 307

7.7 Acousto-Optic Modulator 307

Example 7.7.1: Modulated Directional Coupler 309

7.8 Magneto-Optic Effects 310

7.9 Non-Linear Optics and Second Harmonic Generation 311

Questions and Problems 314

NOTATION AND ABBREVIATIONS 323

INDEX 332

精品推荐