图书介绍

工程数学解析 数学在力学中的应用pdf电子书版本下载

工程数学解析  数学在力学中的应用
  • (日)关谷壮著;陈和等译 著
  • 出版社: 上海:同济大学出版社
  • ISBN:7560824994
  • 出版时间:2002
  • 标注页数:225页
  • 文件大小:24MB
  • 文件页数:233页
  • 主题词:工程数学(学科: 应用 学科: 工程力学 学科: 解题) 工程数学 工程力学

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

工程数学解析 数学在力学中的应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 矩阵 1

1.1 矩阵及其表示方法 1

1.2 各种矩阵的名称 2

A.长方矩阵 2

B.行矢量与列矢量 3

C.转置矩阵 3

D.方阵 4

E.对角矩阵 4

F.对称矩阵与反对称矩阵 5

G.零矩阵 5

1.3 矩阵的计算方法 6

1.4 逆阵 10

1.5 工程上的应用 12

A.结构力学上的应用 12

B.二对端子电路中的串列矩阵 14

习题1 15

补遗 18

1.1 用电子计算机求解联立多元一次代数方程式和计算逆阵 18

1.2 基尔霍夫定律 18

A.第1定律 18

B.第2定律 18

第2章 矢量 20

2.1 标量与矢量 20

2.2 矢量的相等、和、实数倍、差 20

2.3 矢量之和在工程力学中的应用 22

A.作用在一点上的三个力的平衡(拉密定理) 22

B.克雷莫纳应力图 23

2.4 矢量的解析表达式 26

2.5 矢量的内积 28

2.6 矢量的外积 31

习题2 34

补遗 36

2.1 正弦定理 37

第3章 张量 37

3.1 0阶、1阶、2阶张量 37

3.2 2阶张量之例(应力张量) 40

3.3 下标记号 48

习题3 50

第4章 偏导数 53

4.1 多元函数 53

4.2 偏微分法 53

4.3 偏导数的链式法则 55

4.4 隐函数的求导 56

4.5 方向导数 57

4.6 全微分 60

4.7 雅可比 62

4.8 多元函数的泰勒展开 65

习题4 66

第5章 定积分 68

5.1 定积分的定义和计算 68

5.2 定积分定义的扩大 71

5.3 定积分的工程应用 71

A.在水力学中的应用(流过堰的流量) 71

B.在材料力学中的应用(惯性矩) 73

5.4 含参变量的积分的微分法(莱布尼茨公式) 75

5.5 被积函数为无界时的定积分和无限积分 78

5.6 Г函数与β函数 79

5.7 二、三个重要的定积分 82

习题5 85

第6章 线积分、面积分、场的关系式 88

6.1 数量场、矢量场、张量场 88

6.2 线积分 88

A.沿平面曲线的线积分 88

B.沿空间曲线的线积分 91

6.3 面积分 92

6.4 数量场的梯度变化率 93

6.5 矢量场的发散 96

6.6 矢量场的旋度 98

6.7 二维场的关系式 101

6.8 三维场的关系式 104

A.高斯定理 104

B.格林公式 104

C.斯托克斯(Stokes)定理 105

习题6 105

第7章 复数与复变函数 109

7.1 复数 109

7.2 复平面与极形式 110

7.3 复变函数 113

7.4 复积分 120

7.5 解析函数的泰勒展开 123

7.6 罗朗展开 124

7.7 留数 126

7.8 保角映射及在流体力学方面的应用 129

习题7 134

第8章 傅立叶分析 138

8.1 傅立叶级数 138

8.2 傅立叶变换 140

8.3 拉普拉斯变换 142

8.4 拉普拉斯逆变换 146

8.5 在工程上的应用 148

习题8 151

第9章 微分方程 154

9.1 微分方程 154

9.2 1阶常微分方程 154

9.3 常系数2阶线性常微分方程 159

9.4 二阶非线性常微分方程 164

9.5 联立常微分方程组 167

9.6 偏微分方程 168

习题9 174

第10章 变分法 178

10.1 函数与泛函 178

10.2 泛函举例 178

10.3 欧拉方程 178

10.4 Ritz方法 186

习题10 188

第11章 数值分析法 189

11.1 绪言 189

11.2 有限元法 189

11.3 差分法 195

11.4 边界元法 199

11.5 电荷模拟法 204

习题11 207

问题与习题的答案 209

精品推荐