图书介绍

神经网络与深度学习实战 Python+Keras+TensorFlowpdf电子书版本下载

神经网络与深度学习实战  Python+Keras+TensorFlow
  • 陈屹编著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:9787111632665
  • 出版时间:2019
  • 标注页数:326页
  • 文件大小:47MB
  • 文件页数:334页
  • 主题词:人工神经网络-研究;机器学习-研究

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

神经网络与深度学习实战 Python+Keras+TensorFlowPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 神经网络初体验 1

1.1 开发环境的安装 1

1.2 快速构建一个识别手写数字图片的神经网络 2

第2章 深度学习中的微积分基础 8

2.1 实数中的无理数 8

2.2 什么叫极限 10

2.3 函数的连续性 12

2.4 函数求导 13

2.5 导数的一般法则 15

2.6 间套函数的链式求导法则 17

2.7 多变量函数与偏导数 19

2.8 导数与极值 19

2.9 使用导数寻求函数的最小值 21

第3章 深度学习的线性代数基础 25

3.1 常量与向量 26

3.2 矩阵及相关操作 26

3.3 tensor——多维向量 28

3.4 向量范数 30

第4章 神经网络的理论基础 31

4.1 详解神经网络中的神经元激活函数 31

4.2 使用矩阵运算驱动神经网络数据加工链 38

4.3 通过反向传播算法回传误差改进链路权重 42

4.4 使用矩阵和梯度下降法实现神经网络的迭代训练 45

4.5 手算梯度下降法,详解神经网络迭代训练过程 53

第5章 用Python从零实现识别手写数字的神经网络 58

5.1 基本框架的搭建 58

5.2 实现网络的迭代训练功能 62

5.3 网络训练,识别手写数字图片 64

第6章 神经网络项目实践 70

6.1 使用神经网络分析电影评论的正能量和负能量 70

6.2 使用神经网络实现新闻话题分类 78

6.3 使用神经网络预测房价中位数 83

第7章 使用神经网络实现机器视觉识别 90

7.1 卷积神经网络入门 90

7.2 从零开始构造一个识别猫、狗图片的卷积网络 93

7.3 使用预先训练的卷积网络实现图像快速识别 101

7.4 视觉化神经网络的学习过程 105

7.5 揭秘卷积网络的底层原理 109

第8章 用深度学习实现自然语言处理 124

8.1 Word Embedding单词向量化 124

8.2 概率论的一些重要概念 130

8.3 skip-gram单词向量化算法的数学原理 136

8.4 使用预先训练好的单词向量实现新闻摘要分类 140

8.5 RNN——具有记忆功能的神经网络 143

8.6 LSTM网络层详解及其应用 145

8.7 使用RNN和CNN混合的“鸡尾酒疗法”提升网络运行效率 148

第9章 自动编解码网络和生成型对抗性网络 150

9.1 自动编解码器网络的原理与实现 150

9.2 去噪型编解码网络 154

9.3 使用自动编解码网络实现黑白图片上色 157

9.4 生成型对抗性网络 162

9.5 生成型对抗性网络的代码实现 163

9.6 条件性生成型对抗性网络 169

第10章 增强性学习网络开发实践 176

10.1 增强性学习网络的基本原理 176

10.2 开发环境配置 177

10.3 增强性学习网络的数学原理 179

10.4 Bellman函数和最优化 180

10.5 Bellman等式的推导 181

10.6 用实例讲解Bellman函数的应用 182

10.7 解决冰冻湖问题 185

10.8 ε贪婪算法 188

10.9 运用神经网络和Bellman函数解决Cartpole问题 188

第11章 TensorFlow入门 193

11.1 TensorFlow图运算原理 193

11.2 TensorFlow代码实践 195

11.3 TensorFlow的输入、变量、输出及运算操作 197

11.4 TensorFlow的变量定义 200

11.5 TensorFlow的运算输出及运算操作 201

11.6 用TensorFlow开发神经网络的相关操作 204

11.7 开发TensorFlow程序应注意的事项 207

11.8 使用TensorFlow开发神经网络 213

第12章 使用TensorFlow和Keras开发高级自然语言处理系统 218

12.1 Skip-Gram算法实现 218

12.2 使用RNN网络模型的基本原理 230

12.3 代码实现RNN网络 232

12.4 LSTM网络的结构原理 242

12.5 使用LSTM网络实现人机问答系统 247

第13章 使用TensorFlow和Keras实现高级图像识别处理系统 256

13.1 实现艺术风格的转换 256

13.2 使用胶囊网络实现服装识别 266

13.3 使用TensorFlow API实现精准物体识别 285

13.4 DeeDream:使用神经网络构造具有惊悚审美效果的艺术作品 293

第14章 使用TensorFlow和Keras打造智能推荐系统 300

14.1 创造一个网易云音乐推荐引擎 300

14.2 使用TensorFlow构建高质量商品推荐系统 309

14.3 实现淘宝“拍立淘”图片搜索引擎 313

第15章 深度学习的重要概念和技巧总结 319

精品推荐