图书介绍

深度学习之图像识别 核心技术与案例实战pdf电子书版本下载

深度学习之图像识别  核心技术与案例实战
  • 言有三著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:9787111624721
  • 出版时间:2019
  • 标注页数:267页
  • 文件大小:116MB
  • 文件页数:283页
  • 主题词:人工智能-算法-应用-图象识别

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

深度学习之图像识别 核心技术与案例实战PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 神经网络基础 1

1.1 神经网络的生物基础与数学模型 1

1.1.1 神经元 1

1.1.2 感知机 2

1.1.3 BP算法 6

1.2 卷积神经网络基础 10

1.2.1 卷积神经网络的基本结构 11

1.2.2 卷积与权值共享 13

1.2.3 感受野与池化 14

第2章 深度学习优化基础 17

2.1 深度学习主流开源框架 17

2.1.1 Caffe简介 18

2.1.2 TensorFlow简介 18

2.1.3 PyTorch简介 19

2.1.4 Theano简介 20

2.1.5 Keras简介 20

2.1.6 MXNet简介 21

2.1.7 Chainer简介 21

2.2 网络优化参数 22

2.2.1 常用激活函数 22

2.2.2 参数初始化方法 26

2.2.3 最优化方法 27

2.2.4 归一化方法 31

2.2.5 正则化方法 33

第3章 深度学习中的数据 36

3.1 深度学习通用数据集的发展 36

3.1.1 MNIST数据集 36

3.1.2 CIFAR10和CIFAR100数据集 37

3.1.3 PASCAL数据集 38

3.1.4 ImageNet数据集 38

3.1.5 Microsoft COCO数据集 39

3.2 常见的计算机视觉任务数据集 40

3.2.1 人脸数据集 40

3.2.2 自动驾驶数据集 52

3.2.3 医学数据集 55

3.3 数据增强 59

3.3.1 有监督数据增强 60

3.3.2 无监督数据增强 63

3.4 数据的收集与标注 65

3.4.1 数据收集 65

3.4.2 数据标注 67

3.4.3 数据清洗与整理 68

第4章 图像分类 70

4.1 图像分类基础 70

4.1.1 图像分类问题 70

4.1.2 深度学习图像分类发展简史 72

4.1.3 评测指标与优化目标 75

4.1.4 图像分类的挑战 76

4.2 移动端实时表情分类实战 77

4.2.1 项目背景 78

4.2.2 数据预处理 80

4.2.3 项目方案 82

4.2.4 模型训练与测试 84

4.2.5 项目总结 88

4.3 细粒度图像分类实战 89

4.3.1 项目背景 89

4.3.2 项目方案 90

4.3.3 模型训练与测试 92

4.3.4 参数调试 97

4.3.5 项目总结 102

第5章 图像分割 103

5.1 传统图像分割方法 103

5.1.1 阈值法 103

5.1.2 区域生长法与超像素 105

5.1.3 图切割 105

5.1.4 活动轮廓模型 106

5.2 深度学习图像分割 109

5.2.1 基本流程 110

5.2.2 反卷积 110

5.2.3 多尺度与感受野 112

5.2.4 CRF方法 113

5.2.5 Image Matting与图像融合 114

5.3 移动端实时图像分割项目 115

5.3.1 项目背景 115

5.3.2 项目方案 116

5.3.3 模型训练与总结 126

5.4 一个实时肖像换背景项目 127

5.4.1 项目背景 127

5.4.2 项目方案 128

5.4.3 模型训练与测试 134

5.4.4 项目总结 138

第6章 目标检测 139

6.1 目标检测基础 139

6.1.1 检测窗口选择 140

6.1.2 特征提取 141

6.1.3 分类器 142

6.1.4 V-J人脸检测算法 143

6.2 深度学习目标检测方法 145

6.2.1 Selective search与R-CNN 146

6.2.2 RoI Pooling与SPPNet 147

6.2.3 Fast R-CNN与Faster R-CNN 149

6.2.4 YOLO方法 152

6.2.5 SSD方法 154

6.2.6 目标检测中的关键技术 155

6.3 实战Faster-R-CNN目标检测 157

6.3.1 项目背景 157

6.3.2 py-faster-rcnn框架解读 157

6.3.3 模型定义与分析 170

6.3.4 模型训练与测试 180

6.3.5 项目总结 183

第7章 数据与模型可视化 185

7.1 数据可视化 185

7.1.1 低维数据可视化 185

7.1.2 高维数据可视化 187

7.2 模型可视化 190

7.2.1 模型结构可视化 190

7.2.2 模型权重可视化 198

7.2.3 特征图可视化 201

7.3 可视化案例 202

7.3.1 项目背景 202

7.3.2 数据接口定义 204

7.3.3 网络结构定义 205

7.3.4 可视化代码添加 207

7.3.5 可视化训练指标 207

第8章 模型压缩 209

8.1 模型压缩方法 209

8.1.1 模型设计压缩 210

8.1.2 网络剪枝与量化 213

8.1.3 张量分解 216

8.1.4 模型蒸馏与迁移学习 216

8.2 模型压缩实战 218

8.2.1 网络分析 220

8.2.2 输入尺度和第一层卷积设计 224

8.2.3 网络宽度与深度压缩 226

8.2.4 弥补通道损失 228

8.2.5 总结 230

第9章 损失函数 231

9.1 分类任务损失 231

9.1.1 什么是0-1 loss 231

9.1.2 熵与交叉熵loss 231

9.1.3 softmax loss及其变种 232

9.1.4 KL散度 237

9.1.5 Hinge loss简介 237

9.1.6 Exponential loss与Logistic loss 237

9.1.7 多标签分类任务loss 238

9.2 回归任务损失 238

9.2.1 L1 loss与L2 loss 238

9.2.2 L1 loss与L2 loss的改进 239

9.3 常见图像任务与loss使用 240

9.3.1 图像基础任务 240

9.3.2 风格化与图像复原,超分辨重建 240

9.3.3 生成对抗网络 241

9.3.4 总结 245

第10章 模型部署与上线 246

10.1 微信小程序前端开发 246

10.1.1 小程序的技术特点与定位 246

10.1.2 Web前端基础 248

10.1.3 小程序开发工具 251

10.1.4 小程序前端目录 252

10.1.5 小程序前端开发 254

10.2 微信小程序服务端开发 260

10.2.1 域名注册与管理 260

10.2.2 服务端框架简介 261

10.2.3 算法搭建与实现 262

10.3 Caffe环境配置 264

10.3.1 依赖库安装 264

10.3.2 Caffe编译安装 266

精品推荐