图书介绍

OpenCV 4计算机视觉项目实战 原书第2版pdf电子书版本下载

OpenCV 4计算机视觉项目实战  原书第2版
  • (西班牙)大卫·米兰·埃斯克里瓦(DavidMillanEscriva),(西班牙)维尼休斯·G.门东萨(ViniciusG.Mendonca),(美)普拉蒂克·乔希(PrateekJoshi)著;冀臻译 著
  • 出版社: 北京:机械工业出版社
  • ISBN:9787111631644
  • 出版时间:2019
  • 标注页数:210页
  • 文件大小:25MB
  • 文件页数:221页
  • 主题词:图象处理软件-程序设计

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

OpenCV 4计算机视觉项目实战 原书第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 OpenCV入门 1

1.1了解人类视觉系统 1

1.2人类如何理解图像内容 3

1.3你能用OpenCV做什么 4

1.3.1内置数据结构和输入/输出 4

1.3.2图像处理操作 5

1.3.3 GUI 5

1.3.4视频分析 6

1.3.5 3D重建 6

1.3.6特征提取 7

1.3.7对象检测 7

1.3.8机器学习 8

1.3.9计算摄影 8

1.3.10形状分析 9

1.3.11光流算法 9

1.3.12人脸和对象识别 9

1.3.13表面匹配 10

1.3.14文本检测和识别 10

1.3.15 深度学习 10

1.4安装OpenCV 10

1.4.1 Windows 11

1.4.2 Mac OS X 11

1.4.3 Linux 13

1.5总结 14

第2章 OpenCV基础知识导论 15

2.1技术要求 15

2.2基本CMake配置文件 16

2.3创建一个库 16

2.4管理依赖项 17

2.5让脚本更复杂 18

2.6图像和矩阵 20

2.7读/写图像 22

2.8读取视频和摄像头 25

2.9其他基本对象类型 27

2.9.1 Vec对象类型 27

2.9.2 Scalar对象类型 28

2.9.3 Point对象类型 28

2.9.4 Size对象类型 29

2.9.5 Rect对象类型 29

2.9.6 RotatedRect对象类型 29

2.10基本矩阵运算 30

2.11基本数据存储 32

2.12总结 34

第3章 学习图形用户界面 35

3.1技术要求 35

3.2 OpenCV用户界面介绍 36

3.3 OpenCV的基本图形用户界面 36

3.4 Qt图形用户界面 44

3.5 OpenGL支持 50

3.6总结 54

第4章 深入研究直方图和滤波器 55

4.1技术要求 56

4.2生成CMake脚本文件 56

4.3创建图形用户界面 57

4.4绘制直方图 59

4.5图像颜色均衡 62

4.6 Lomography效果 64

4.7卡通效果 68

4.8总结 72

第5章 自动光学检查、对象分割和检测 73

5.1技术要求 73

5.2隔离场景中的对象 74

5.3为AOI创建应用程序 76

5.4预处理输入图像 78

5.4.1噪声消除 78

5.4.2用光模式移除背景进行分割 79

5.4.3阈值 84

5.5分割输入图像 85

5.5.1连通组件算法 85

5.5.2 findContours算法 90

5.6总结 92

第6章 学习对象分类 94

6.1技术要求 94

6.2机器学习概念介绍 95

6.3计算机视觉和机器学习工作流程 98

6.4自动对象检查分类示例 100

6.4.1特征提取 102

6.4.2训练SVM模型 105

6.4.3输入图像预测 109

6.5总结 111

第7章 检测面部部位与覆盖面具 112

7.1技术要求 112

7.2了解Haar级联 112

7.3什么是积分图像 114

7.4在实时视频中覆盖面具 115

7.5戴上太阳镜 118

7.6跟踪鼻子、嘴巴和耳朵 121

7.7总结 122

第8章 视频监控、背景建模和形态学操作 123

8.1技术要求 123

8.2理解背景减除 124

8.3直接的背景减除 124

8.4帧差分 128

8.5高斯混合方法 131

8.6形态学图像处理 133

8.7使形状变细 134

8.8使形状变粗 135

8.9其他形态运算符 136

8.9.1形态开口 136

8.9.2形态闭合 137

8.9.3绘制边界 138

8.9.4礼帽变换 139

8.9.5黑帽变换 140

8.10总结 140

第9章 学习对象跟踪 141

9.1技术要求 141

9.2跟踪特定颜色的对象 141

9.3构建交互式对象跟踪器 143

9.4用Harris角点检测器检测点 148

9.5用于跟踪的好特征 151

9.6基于特征的跟踪 153

9.6.1 Lucas-Kanade方法 153

9.6.2 Farneback算法 157

9.7总结 161

第10章 开发用于文本识别的分割算法 162

10.1技术要求 162

10.2光学字符识别介绍 162

10.3预处理阶段 164

10.3.1对图像进行阈值处理 164

10.3.2文本分割 165

10.4在你的操作系统上安装Tesseract OCR 172

10.4.1在Windows上安装Tesseract 172

10.4.2在Mac上安装Tesseract 173

10.5使用Tesseract OCR库 173

10.6总结 177

第11章 用Tesseract进行文本识别 178

11.1技术要求 178

11.2文本API的工作原理 179

11.2.1场景检测问题 179

11.2.2极值区域 180

11.2.3极值区域过滤 181

11.3使用文本API 182

11.3.1文本检测 182

11.3.2文本提取 187

11.3.3文本识别 189

11.4总结 193

第12章 使用OpenCV进行深度学习 194

12.1技术要求 194

12.2深度学习简介 195

12.2.1什么是神经网络,我们如何从数据中学习 195

12.2.2卷积神经网络 197

12.3 OpenCV中的深度学习 198

12.4 YOLO用于实时对象检测 199

12.4.1 YOLO v3深度学习模型架构 200

12.4.2 YOLO数据集、词汇表和模型 200

12.4.3将YOLO导入OpenCV 201

12.5用SSD进行人脸检测 204

12.5.1 SSD模型架构 204

12.5.2将SSD人脸检测导入OpenCV 204

12.6总结 208

精品推荐