图书介绍

Python机器学习手册 从数据预处理到深度学习pdf电子书版本下载

Python机器学习手册  从数据预处理到深度学习
  • (美)Chris Albon(克里斯·阿尔本) 著
  • 出版社: 北京:电子工业出版社
  • ISBN:9787121369629
  • 出版时间:2019
  • 标注页数:346页
  • 文件大小:76MB
  • 文件页数:363页
  • 主题词:软件工具-程序设计

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

Python机器学习手册 从数据预处理到深度学习PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 向量、矩阵和数组 1

1.0 简介 1

1.1 创建一个向量 1

1.2 创建一个矩阵 2

1.3 创建一个稀疏矩阵 3

1.4 选择元素 5

1.5 展示一个矩阵的属性 6

1.6 对多个元素同时应用某个操作 7

1.7 找到最大值和最小值 8

1.8 计算平均值、方差和标准差 9

1.9 矩阵变形 10

1.10 转置向量或矩阵 11

1.11 展开一个矩阵 12

1.12 计算矩阵的秩 13

1.13 计算行列式 14

1.14 获取矩阵的对角线元素 14

1.15 计算矩阵的迹 15

1.16 计算特征值和特征向量 16

1.17 计算点积 17

1.18 矩阵的相加或相减 18

1.19 矩阵的乘法 19

1.20 计算矩阵的逆 20

1.21 生成随机数 21

第2章 加载数据 23

2.0 简介 23

2.1 加载样本数据集 23

2.2 创建仿真数据集 25

2.3 加载CSV文件 28

2.4 加载Excel文件 29

2.5 加载JSON文件 29

2.6 查询SQL数据库 31

第3章 数据整理 33

3.0 简介 33

3.1 创建一个数据帧 34

3.2 描述数据 35

3.3 浏览数据帧 37

3.4 根据条件语句来选择行 39

3.5 替换值 40

3.6 重命名列 41

3.7 计算最小值、最大值、总和、平均值与计数值 43

3.8 查找唯一值 44

3.9 处理缺失值 45

3.10 删除一列 47

3.11 删除一行 48

3.12 删除重复行 49

3.13 根据值对行分组 51

3.14 按时间段对行分组 52

3.15 遍历一个列的数据 54

3.16 对一列的所有元素应用某个函数 55

3.17 对所有分组应用一个函数 56

3.18 连接多个数据帧 57

3.19 合并两个数据帧 59

第4章 处理数值型数据 63

4.0 简介 63

4.1 特征的缩放 63

4.2 特征的标准化 65

4.3 归一化观察值 66

4.4 生成多项式和交互特征 69

4.5 转换特征 70

4.6 识别异常值 71

4.7 处理异常值 73

4.8 将特征离散化 75

4.9 使用聚类的方式将观察值分组 77

4.10 删除带有缺失值的观察值 79

4.11 填充缺失值 81

第5章 处理分类数据 83

5.0 简介 83

5.1 对nominal型分类特征编码 84

5.2 对ordinal分类特征编码 86

5.3 对特征字典编码 88

5.4 填充缺失的分类值 91

5.5 处理不均衡分类 93

第6章 处理文本 97

6.0 简介 97

6.1 清洗文本 97

6.2 解析并清洗HTML 99

6.3 移除标点 100

6.4 文本分词 101

6.5 删除停止词(stop word) 102

6.6 提取词干 103

6.7 标注词性 104

6.8 将文本编码成词袋(Bag of Words) 107

6.9 按单词的重要性加权 109

第7章 处理日期和时间 113

7.0 简介 113

7.1 把字符串转换成日期 113

7.2 处理时区 115

7.3 选择日期和时间 116

7.4 将日期数据切分成多个特征 117

7.5 计算两个日期之间的时间差 118

7.6 对一周内的各天进行编码 119

7.7 创建一个滞后的特征 120

7.8 使用滚动时间窗口 121

7.9 处理时间序列中的缺失值 123

第8章 图像处理 127

8.0 简介 127

8.1 加载图像 128

8.2 保存图像 130

8.3 调整图像大小 131

8.4 裁剪图像 132

8.5 平滑处理图像 133

8.6 图像锐化 136

8.7 提升对比度 138

8.8 颜色分离 140

8.9 图像二值化 142

8.10 移除背景 144

8.11 边缘检测 148

8.12 角点检测 150

8.13 为机器学习创建特征 153

8.14 将颜色平均值编码成特征 156

8.15 将色彩直方图编码成特征 157

第9章 利用特征提取进行特征降维 161

9.0 简介 161

9.1 使用主成分进行特征降维 161

9.2 对线性不可分数据进行特征降维 164

9.3 通过最大化类间可分性进行特征降维 166

9.4 使用矩阵分解法进行特征降维 169

9.5 对稀疏数据进行特征降维 170

第10章 使用特征选择进行降维 173

10.0 简介 173

10.1 数值型特征方差的阈值化 173

10.2 二值特征的方差阈值化 175

10.3 处理高度相关性的特征 176

10.4 删除与分类任务不相关的特征 178

10.5 递归式特征消除 180

第11章 模型评估 183

11.0 简介 183

11.1 交叉验证模型 183

11.2 创建一个基准回归模型 187

11.3 创建一个基准分类模型 188

11.4 评估二元分类器 190

11.5 评估二元分类器的阈值 193

11.6 评估多元分类器 197

11.7 分类器性能的可视化 198

11.8 评估回归模型 201

11.9 评估聚类模型 203

11.10 创建自定义评估指标 204

11.11 可视化训练集规模的影响 206

11.12 生成对评估指标的报告 208

11.13 可视化超参数值的效果 209

第12章 模型选择 213

12.0 简介 213

12.1 使用穷举搜索选择最佳模型 213

12.2 使用随机搜索选择最佳模型 216

12.3 从多种学习算法中选择最佳模型 218

12.4 将数据预处理加入模型选择过程 220

12.5 用并行化加速模型选择 221

12.6 使用针对特定算法的方法加速模型选择 223

12.7 模型选择后的性能评估 224

第13章 线性回归 227

13.0 简介 227

13.1 拟合一条直线 227

13.2 处理特征之间的影响 229

13.3 拟合非线性关系 231

13.4 通过正则化减少方差 233

13.5 使用套索回归减少特征 235

第14章 树和森林 237

14.0 简介 237

14.1 训练决策树分类器 237

14.2 训练决策树回归模型 239

14.3 可视化决策树模型 240

14.4 训练随机森林分类器 243

14.5 训练随机森林回归模型 244

14.6 识别随机森林中的重要特征 245

14.7 选择随机森林中的重要特征 248

14.8 处理不均衡的分类 249

14.9 控制决策树的规模 250

14.10 通过boosting提高性能 252

14.11 使用袋外误差(Out-of-Bag Error)评估随机森林模型 253

第15章 KNN 255

15.0 简介 255

15.1 找到一个观察值的最近邻 255

15.2 创建一个KNN分类器 258

15.3 确定最佳的邻域点集的大小 260

15.4 创建一个基于半径的最近邻分类器 261

第16章 逻辑回归 263

16.0 简介 263

16.1 训练二元分类器 263

16.2 训练多元分类器 265

16.3 通过正则化来减小方差 266

16.4 在超大数据集上训练分类器 267

16.5 处理不均衡的分类 269

第17章 支持向量机 271

17.0 简介 271

17.1 训练一个线性分类器 271

17.2 使用核函数处理线性不可分的数据 274

17.3 计算预测分类的概率 278

17.4 识别支持向量 279

17.5 处理不均衡的分类 281

第18章 朴素贝叶斯 283

18.0 简介 283

18.1 为连续的数据训练分类器 284

18.2 为离散数据和计数数据训练分类器 286

18.3 为具有二元特征的数据训练朴素贝叶斯分类器 287

18.4 校准预测概率 288

第19章 聚类 291

19.0 简介 291

19.1 使用K-Means聚类算法 291

19.2 加速K-Means聚类 294

19.3 使用Meanshift聚类算法 295

19.4 使用DBSCAN聚类算法 296

19.5 使用层次合并聚类算法 298

第20章 神经网络 301

20.0 简介 301

20.1 为神经网络预处理数据 302

20.2 设计一个神经网络 304

20.3 训练一个二元分类器 307

20.4 训练一个多元分类器 309

20.5 训练一个回归模型 311

20.6 做预测 313

20.7 可视化训练历史 315

20.8 通过权重调节减少过拟合 318

20.9 通过提前结束减少过拟合 320

20.10 通过Dropout减少过拟合 322

20.11 保存模型训练过程 324

20.12 使用k折交叉验证评估神经网络 326

20.13 调校神经网络 328

20.14 可视化神经网络 331

20.15 图像分类 333

20.16 通过图像增强来改善卷积神经网络的性能 337

20.17 文本分类 339

第21章 保存和加载训练后的模型 343

21.0 简介 343

21.1 保存和加载scikit-learn模型 343

21.2 保存和加载Keras模型 345

精品推荐