图书介绍

数据仓库与数据挖掘pdf电子书版本下载

数据仓库与数据挖掘
  • 安淑芝等编著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302106886
  • 出版时间:2005
  • 标注页数:207页
  • 文件大小:23MB
  • 文件页数:220页
  • 主题词:数据库系统-高等学校-教材;数据采集-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

数据仓库与数据挖掘PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 绪论 1

1.1 初识数据挖掘 1

1.1.1 数据挖掘的产生 1

1.1.2 数据挖掘的应用价值 1

目录 1

1.2 初识数据仓库 2

1.2.1 数据仓库的产生 2

1.1.4 数据挖掘的定义 2

1.1.3 数据挖掘的发展过程 2

1.2.2 数据仓库的应用价值 3

1.2.3 数据仓库的发展过程 4

1.2.4 数据仓库的定义 4

1.2.5 数据仓库与数据挖掘的关系 4

1.3 进一步理解数据挖掘 5

1.3.1 数据挖掘的功能 5

1.3.2 数据挖掘常用技术 6

1.3.3 数据挖掘的过程 10

1.4.1 应用领域 11

1.4 数据挖掘应用实例 11

1.4.2 典型案例 13

1.5 数据挖掘的发展趋势 16

1.5.1 数据挖掘研究方向 16

1.5.2 数据挖掘应用的热点 16

小结 17

习题 17

第2章 数据仓库 18

2.1 进一步深入理解数据仓库的定义 18

2.1.1 数据仓库的数据是面向主题的 19

2.1.2 数据仓库的数据是集成的 22

2.1.3 数据仓库的数据是不可更新的 22

2.1.4 数据仓库的数据是随时间不断变化的 22

2.2 数据仓库的结构 23

2.2.1 元数据 23

2.2.2 粒度的概念 26

2.2.3 分割问题 27

2.2.4 数据仓库中的数据组织形式 28

2.4 数据仓库的清理 30

2.3 数据仓库的说明——标准手册 30

2.5 数据仓库系统的设计 31

2.5.1 数据仓库系统设计方法 31

2.5.2 数据仓库设计的三级数据模型 33

2.5.3 提高数据仓库的性能 36

2.5.4 数据仓库设计步骤 38

2.6 数据仓库数据的访问 45

2.6.1 数据仓库数据的直接访问 46

2.6.2 数据仓库数据的间接访问 46

2.7 数据仓库的应用 48

2.7.1 数据仓库的主要应用领域 49

2.7.2 数据仓库应用实例 49

小结 52

习题 52

3.1 数据预处理的目的 53

3.1.1 原始数据中存在的问题 53

第3章 数据预处理 53

3.1.2 数据预处理的方法和功能 54

3.2 数据清理 54

3.2.1 处理空缺值 55

3.2.2 噪声数据的处理 56

3.3 数据集成和变换 59

3.3.1 数据集成 59

3.3.2 数据变换 62

3.4.2 数据立方体聚集 64

3.4.1 数据归约的方法 64

3.4 数据归约 64

3.4.3 维归约 65

3.4.4 数据压缩 67

3.4.5 数值归约 67

3.4.6 离散化与概念分层生成 70

小结 75

习题 76

4.1.2 广义知识的发现方法 78

4.1.1 广义知识的概念 78

4.1 广义知识 78

第4章 数据挖掘发现知识的类型 78

4.2 关联知识 80

4.2.1 关联知识的概念 80

4.2.2 关联知识的发现方法 80

4.2.3 关联规则应用实例 81

4.3 分类知识 82

4.3.1 分类知识的概念 82

4.3.2 分类知识的发现方法 82

4.3.3 分类知识应用实例 83

4.4 预测型知识 84

4.4.1 预测型知识的概念 84

4.4.2 预测型知识的发现方法 84

4.4.3 预测型知识应用实例 85

4.5 偏差型知识 86

4.5.1 偏差型知识的概念 86

4.5.2 偏差型知识的发现方法 86

习题 89

小结 89

第5章 数据挖掘中常用算法 90

5.1 神经网络算法 90

5.1.1 神经网络的概念 90

5.1.2 神经网络的计算机模型 93

5.1.3 定义神经网络拓扑 98

5.1.4 基于神经网络的算法 99

5.2 使用候选项集找频繁项集(Apriori)算法 101

5.2.1 关联规则的分类 101

5.2.2 Apriori算法 102

5.2.3 从频繁项集产生关联规则 104

5.3 决策树算法 104

5.3.1 信息论的基本原理 104

5.3.2 ID3算法 107

5.3.3 树剪枝 111

5.3.4 由决策树提取分类规则 112

5.4.1 聚类分析的概念 113

5.4 聚类分析 113

5.4.2 聚类分析中的数据类型 115

5.4.3 几种主要的聚类分析方法 120

5.4.4 聚类分析算法 122

小结 124

习题 125

第6章 数据挖掘的工具及其应用 126

6.1 SQL Server 2000数据挖掘工具应用 126

6.1.1 安装要求 126

6.1.2 安装过程 127

6.1.3 Analysis Services功能介绍 129

6.1.4 Analysis Services的优点 129

6.1.5 创建数据挖掘模型 130

6.1.6 查看和分析挖掘结果 143

6.1.7 聚类模型 149

6.2.1 安装SPSS Clementine 151

6.2.2 SPSS Clementine 8.0工作环境介绍 151

6.2 SPSS数据挖掘工具应用 151

6.2.3 Clementine应用的结构 152

6.2.4 Clementine的使用 162

6.2.5 挖掘模型的建立和执行 164

小结 177

习题 177

第7章 数据挖掘应用实例 178

7.1 实例背景 178

7.2.2 决策树的概念 179

7.2.1 数据挖掘中的分类算法 179

7.2 决策树算法 179

7.3 实例开发 181

7.3.1 实例开发前的准备 181

7.3.2 实例的系统结构 183

7.3.3 决策树算法模块 184

7.3.4 算法的程序实现 186

7.4 核心源程序 192

小结 206

参考文献 207

精品推荐